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What is it that we humans depend on? We depend on our
words... Our task is to communicate experience and ideas to
others. We must strive continually to extend the scope of our
description, but in such a way that our messages do not thereby
lose their objective or unambiguous character... We are sus-
pended in language in such a way that we cannot say what is up
and what is down. The word ”reality” is also a word, a word
which we must learn to use correctly.

- Niels Bohr
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Chapter 1

Classical Mechanics

Classical Mechanics describes everything in the world as if they have an
exact position x and velocity ẋ, which in principle could be known simulta-
neously. There happens to be real physical limit as to how well we can know
both of these quantities at the same time (from the Heisenberg Uncertainty
principle), but that limit is so small that for everyday objects, Classical
Mechanics works just fine.

1.1 Lagrangian Formalism

When dealing with conservative forces, there turns out to be a nice way to
figure out all of Newton’s laws without having to draw out all of the free
body diagrams. In fact, when this method was first proposed, Lagrange
bragged that he had no pictures or diagrams in his book1. The Lagrangian
is defined as

L ≡ T − V (1.1)

Where T is the kinetic energy and U is the potential energy. For each
coordinate qi (usually things like x, y, z), we get an equation

d

dt

!∂L
∂q̇i

"
=

∂L

∂qi
(1.2)

These are called the Euler-Lagrange equations. Basically all Classical
Mechanics problems boil down to finding a useful set of coordinates to de-
scribe your system, then writing out T and U in terms of them, then solving
a system of equations given by these.

1Analytical Mechanics - Lagrange

9
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An easy way to find the Lagrangian for any system is to identify the
coordinate of each of its masses in cartesian coordinates, then rewriting it
in terms of coordinates that best suit the problem.

x1(q1, q2, ...) (1.3)

y1(q1, q2, ...) (1.4)

We can then just take the time derivative of each of them to solve for
the q̇ term.

1.1.1 Action

2 The action is a scalar quantity defined by

S[q] =

# t2

t1

dtL(q1, ...qN , q̇1, ..., q̇N , t) (1.5)

The [q] means that it takes as an argument a function not just a variable.
These types of mathematical objects are called functionals, and take entire
trajectories as their argument instead of just one point. In order to find
the action, we would have to know exactly the path that q1, q2, q3, ... had
all taken, then we integrate the Lagrangian, which is a function of those
variables from t1 to t2.

The importance of the action is that for any real physical system, the
”path” which all of the coordinates q = (q1, q2, q3, ...) follow will be one for
which the action will always be at an extremum or saddle point.

∂S

∂q(t)
= 0 (1.6)

This weird fact is called Hamilton’s Principle. Apparently the extremization
of the action is a direct consequence of the second law of thermodynamics,
that entropy is always increasing.3 Knowing that the integral of the La-
grangian extremizes the Action, we can actually derive Lagrange’s equations
of motion using variational calculus.

To do so, we consider two possible Lagrangians, one is a function of all
of the coordinates that truly minimize the action, q1, q2, q3, ... etc, and one
is a set that is infinitesimally close to them q′1, q

′
2, q

′
3, ... related by

q′i(t) = qi(t) + εs(t) (1.7)

2Following Professor Eric D’Hoker’s derivation
3todo - https://physics.stackexchange.com/questions/47581/

entropy-and-the-principle-of-least-action

https://physics.stackexchange.com/questions/47581/entropy-and-the-principle-of-least-action
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The differences in the Lagrangians of each case is

δL(q, q̇, t) = L(q′, q̇′, t)− L(q, q̇, t) (1.8)

(1.9)

Since the difference in the Lagrangian will be small (from the small change
in q) we can look at the first order in the Taylor expansion of the difference,
which is

δL(q, q̇, t) =
∂L

∂q
δq +

∂L

∂q̇
δq̇ (1.10)

≈ ε
!∂L
∂q

s+
∂L

∂q̇
ṡ
"

(1.11)

Now looking at the change in the action, we have

δS[q] = ε

# t2

t1

dt
!∂L
∂q

s+
∂L

∂q̇
ṡ
"

(1.12)

We can integrate the ṡ term by parts and find

δS[q] = ε

# t2

t1

dt
!∂L
∂q

− d

dt

∂L

∂q̇

"
s(t) (1.13)

If we want the difference in the action between the two paths to be zero
(giving us our original path back) and know that s(t) is an entirely arbitrary
function, we have to have the integrand be zero

∂L

∂q
− d

dt

∂L

∂q̇
= 0 (1.14)

These are of course the Euler-Lagrange equations of motion for a system.

1.1.2 Holonomic Constraints

This is essentially when you want to say that a particle must travel along
some path, or that the length of a rope is only so long, etc. Basically you can
write out the constraint as a formula, lets do the length of a string hanging
off a ledge.

l = x+ z (1.15)
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Which would be if we have the horizontal component of the string given by
x and vertical by z. Our constraint equation is thus

φ(x, z, t) = 0 = l − x− z (1.16)

From here, we use Lagrange multipliers (Section 5.5) within Lagrange’s
equations over all our constraints...

d

dt

∂L

∂q̇i
− ∂L

∂qi
−
$

α

λα
∂φα

∂qi
= 0

So for each constraint, you have another Lagrange multiplier. To solve
for λα and, and therefore the equations of motion, first look for equations
that don’t contain the term (i.e. ∂φα/∂qi = 0), solve those equations, then
plug their solution into ones that do, eventually finding them.

You can also solve for one of the coordinates in terms of the other ones
in the constraint, and plug it in explicitly to the Lagrangian, then find the
E.L. Equations from there.

1.1.3 Normal Modes

The normal modes of a system are when all parts of the system are oscillating
with the same frequency. So to solve these, we take the ansatz usually that

q1(t) = Aeiωt q2(t) = Beiωt (1.17)

Then we can use these in the equations of motion, and solve for the frequen-
cies, usually in a quadratic equation.

1.1.4 Equilibrium

We know that a system is in equilibrium if the forces acting on it are equal
to zero. This means that

∂V

∂qi
|qi=q0i

= 0

This means that the variable qi will not be accelerated and is in equilib-
rium. The equilibrium point can be solved for by calculating this quantity,
then solving for what q0i must be. We can then find what small oscillations
around the equilibrium would be by guessing a solution of the form

qi(t) = q0i + ηi(t) (1.18)
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From here, we just plug this into the Euler-Lagrange equations for qi,
and solve for the equations of motion for η(t), which tells us how the system
moves for small oscillations around an equilibrium.

1.1.5 Noether’s Theorem

The essence of what this theorem says is that for every symmetry we can
find in our system, there will be some kind of ”conserved quantity” associ-
ated with it that does not change with time. Plug in conserved charges in
equations of motion, not Lagrangian.

Q =
$ ∂L

∂q̇i
δqi − Λ

Q is a conserved quantity, i.e. dQ/dt = 0 Some nice examples of Noether
charges are things like the energy of the system, or the angular momentum.

1.1.6 Solving the Equations of Motion

1. Write out the kinetic and potential energies in a nice choice of coordi-
nates.

2. Find all the Holonomic constraints and plug them in (or do it the other
way)

3. Find EL equations

4. Find Noether Charges

5. Plug in Noether charges into EL equations.

1.2 Hamiltonian Formalism

In a way identical to what we do for thermodynamics, we can make a Leg-
endre transform of our variables into a new set. We start by defining the
canonical momentum as

pi ≡
∂L

∂q̇i
(1.19)

H =
$ dL

dq̇i
dq̇i − L
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1.3 Virial Theorem

Imagine we have some value called G that is defined as

G =

N$

k=1

pk · rk (1.20)

Where pk is the momentum of the kth particle of N , and xk it’s coordinate.
It can be shown4 that this quantity is identical to half the time derivative
of the moment of inertia with

G =
1

2

dI

dt
(1.21)

The trick to derive the Virial theorem is to take the time derivative of G,
giving us

dG

dt
=

N$

k=1

%
pk ·

drk
dt

+
dpk

dt
· rk

&
(1.22)

=

N$

k=1

%
m
drk
dt

· drk
dt

+ Fk · rk
&

(1.23)

= 2T −
N$

k=1

Fk · rk (1.24)

The total force on any one particle Fk is given by the sum of all of the
individual forces from each of the other particles, or

Fk =

N$

j ∕=k

Fjk (1.25)

This lets us rewrite the second term as

N$

k=1

Fk =

N$

k=1

N$

j ∕=k

Fjk · rk =

N$

k=1

N$

j ∕=k

Fjk · (rk − rj) (1.26)

Where the last bit is kosher because no particle has a self force or Fjj = 0.
The usefulness of the theorem come when we have a potential between each
particle is a power series of the form V (rk − rj) = α|rj − rk|n, since

Fjk · (rk − rj) =
%
−∇kV (rk − rj)

&
· (rk − rj) = nV (rk − rj) (1.27)

4https://en.wikipedia.org/wiki/Virial_theorem

https://en.wikipedia.org/wiki/Virial_theorem
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Therefore

n

N$

k=1

N$

j ∕=k

V (rk − rj) = nV (1.28)

Where V is the total potential energy of the system. Therefore if we look
at the average, and have a stably bound system we have that

'dG
dt

(
= 0 = 2〈T 〉 − n〈V 〉 (1.29)

Where n of course is the power of the potential.

1.4 Special Relativity

It turns out that both space and time get jumbled together when you move
fast enough. Special relativity is able to talk about two frames (i.e. two
people) which move at a constant velocity with respect to one another. The
theory was developed as a consequence of the strange fact that the speed of
light, found in Maxwell’s equations, was found to be completely independent
of whatever frame you are in.

With relativity, we always talk about ”frames” which are just places that
you, as an observer would see things from. Galilean relativity (or ”common
sense” relativity) says that if you have light of speed c in one frame F ,
which is moving at speed v towards an observer in frame F ′, the speed of
light should be

c′ = v + c (1.30)

If for instance the like was going towards the origin O in frame F . This
would be faster than what Maxwell’s equation’s say, so something has to
give. Einstein fixed this by positing that both space and time themselves
are changed between frames with different velocities. When you look at
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something that is moving, it is shrunken in the direction of travel compared
to how it sees itself. Additionally the amount of time it takes for an event
to take place (ball thrown, clock tick, etc) takes longer in the frame that
sees the event as moving, than it would in a frame at which the the event
takes place at rest.

To illuminate, lets pretend we have a person on earth (frame F ) and a
person on a spaceship (frame F ′) moving away from the earth in the positive
x direction with speed v. The earth measures everything with coordinates
(t, x, y, z) and the person on the ship measures everything with coordinates
(t′, x′, y′, z′). Both of these coordinate systems are completely normal in
their own frames. If they had a ball on earth and measured it’s radius as r,
the ruler with which they measure it on the ship would say it is the same r
when the entire ship, ball, ruler system is moving together.

Lets pretend that right when the spaceship passes the earth, they are
able to align their coordinate system somehow so everything is zero. The
usefulness of special relativity is know how everyone on the ship (in F ′) sees
things after doing some mathematics with all of the things you are capable
of measuring in F . It turns out that the transformation is given by 5

t′ = γ
!
t− vx

c2

"
(1.31)

x′ = γ(x− vt) (1.32)

y′ = y (1.33)

z′ = z (1.34)

Where

γ =
1)

1− v2

c2

(1.35)

We can do something interesting from here, lets look at the following
quantity

s2 = −c2t′2 + x′2 + y′2 + z′2 (1.36)

=
c2(t2 − vx

c2
)2

1− v2

c2

+
(x− vt)2

1− v2

c2

+ y2 + z2 (1.37)

= −c2t2 + x2 + y2 + z2 (1.38)

It turns out this quantity is invariant when we change between frames.
These type of things are incredibly important when dealing with topics in
special relativity

5do someday, classical HW 3
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1.4.1 Four Vectors

A nice way to write things that give us invariants easily is in four vector
notation. We can define the position contravariant vector with

xµ ≡ (x0, x1, x2, x3) = (ct, x, y, z)

Remember the signs by knowing all the vectors with upper indices have all
positive quantities. We can then define a covariant with

xµ ≡ (−x0, x1, x2, x3) = (−ct, x, y, z) (1.39)

We see that if we dot these two vectors we get

s2 = xµx
µ = −c2t2 + x2 + y2 + z2 (1.40)

This one tells us things about how events are causally connected to one
another, since

s2 = −c2(t2 − t1)
2 + (x2 − x1)

2

• s2 = 0 Lightlike, only massless particles moving at c will have this 0

• s2 > 0 Spacelike, in every frame, there will always be some separation
of space between the events. Causally unrelated

• s2 < 0 Timelike, time separates these events in all frames.

Another useful thing that comes up often is the Minkowski Metric
defined as

ηµν =

*

++,

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

-

../ (1.41)

This transforms a contravariant into a covariant with

xµ = ηµνx
ν (1.42)

Also important is the 4-gradient

∂µ ≡ ∂

∂xµ
= (

∂t

∂x0
∂

∂t
,
∂x

∂x1
∂

∂x
,
∂y

∂x2
∂

∂y
,
∂z

∂x3
∂

∂z
) = (

1

c
∂t, ∂x, ∂y, ∂z) (1.43)

Be aware that the lower index partial is with respect to the upper index
x. Similarly this gives

∂µ = (−1

c
∂t, ∂x, ∂y, ∂z)
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1.4.2 Relativistic Kinematics

The key equation to remember is

E2 = p2c2 +m2c4 (1.44)

We can define the four momentum as

pµ = (E/c, px, py, pz) (1.45)

Notations can sometimes swap the minus signs, but it seems easier to re-
member that all raised index vectors are entirely positive. The covariant is
the same with the front sign swapped. We see that if we rearrange equation
1.44 we can find

−m2c2 = −E2

c2
+ p2 = pµp

µ (1.46)

Usually in the problems here you are given two objects with momentum pµ1
and pµ2 respectively, that turn into a new particle with four-vector pµ3 . We
know that in general

pµ3 = pµ1 + pµ2 (1.47)

Which means we just add each of the components of the vector like normal,
which gives us the new 4 momentum. From here, we can find the invariant
mass of the system just doing

−m2
3c

2 = (p1µ + p2µ)(p
µ
1 + pµ2 ) (1.48)

Proper time is Lorentz invariant and defined as

c2dτ2 = −ηµνdx
µdxν (1.49)

The 4-velocity is then defined as

uµ ≡ dxµ

dτ

Plugging in our definition back into equation 1.49 we get that

−c2 = uµu
ν (1.50)

= −c2
dt

dτ

2

+
dx

dτ

2

+
dy

dτ

2

+
dz

dτ

2

(1.51)

= −c2
dt

dτ

2

(1− v2

c2
) (1.52)
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Figure 1.1: The left is an active rotation, which involves physical rotation of
an object. The right is a passive rotation which involves instead the rotation
of the coordinate system.

This gives us time dilation with γdτ = dt. Replugging this into the definition
of the 4-velocity, we get

uµ = (γc, γvx, γvy, γvz)

This allows us to then define the 4-momentum of a massive particle as

pµ ≡ muµ = (γmc, γmvx, γmvy, γmvz)

The Lorentz force equation is given by

dpµ

dτ
= eFµν dx

ν

dτ

There is a similar way to write the boost in momentum and energy as
we did for space and time

E′ = γ(E − vpx) (1.53)

p′x = γ(px − vE/c2) (1.54)

p′y = py (1.55)

p′z = pz (1.56)

If the other frame F ′ is moving with velocity v in the x direction relative to
frame F .

1.5 Rotation

R(n̂, θ)
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R is a rotation matrix, n̂ is what axis you are choosing to rotate around,
points along that axis. θ determines how far around that axis you are going
to rotate. Directions are chosen from the cross product, for instance if it is
ẑ, we know x× y = z, so that requires use to have it such that it looks like
x chases y, or x will move towards y in the direction it is closest to it from.
This turns out to happen for all of the pairs, when said in order, i.e.

x× y = z (1.57)

y × z = x (1.58)

z × x = y (1.59)

(1.60)

If you ever find them in the opposite order, it is equivalent to going the
opposite direction. There are two typical conventions for rotations outline
in Figure 3.95. In most cases, we only care about the active rotation, given
around the ẑ axis below with

R(ẑ, θ) =

*

,
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

-

/ (1.61)

Similar rotations around x̂, ŷ can be found easily by cyclically permutat-
ing the vectors and realigning, with

*

,
x1
y1
z1

-

/ →

*

,
z1
x1
y1

-

/ (1.62)

*

,
z′1
x′1
y′1

-

/ =

*

,
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

-

/

*

,
z1
x1
y1

-

/ (1.63)

Reorder =⇒

*

,
x′1
y′1
z′1

-

/ =

*

,
cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

-

/

*

,
x1
y1
z1

-

/ (1.64)

This is a rotation around the ŷ axis, as that direction is unaffected.
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1.5.1 Rotating Frames

Given a rotating frame r which is rotating with constant angular velocity ω
and we want to find a non-rotating frame s where Newton’s laws apply, we
have that

vs = vr + ω × r (1.65)

Where r is the distance from the center of rotation. To find the acceleration,
we must also consider the unit vectors as a function of time, with

as =
dvs

dt
=

d

dt

%
|vx|x̂+ |vy|ŷ + |vz|ẑ + ω × (|rx|x̂+ |ry|ŷ + |rz|ẑ)

&
(1.66)

=
%
|v̇x|x̂+ |v̇y|ŷ + |v̇z|ẑ + ω × (|ṙx|x̂+ |ṙy|ŷ + |ṙz|ẑ)

&
(1.67)

+
%
|vx| ˙̂x+ |vy| ˙̂y + |vz| ˙̂z + ω × (|rx| ˙̂x+ |ry| ˙̂y + |rz| ˙̂z)

&
(1.68)

(1.69)

In general the time derivative of any unit vector in a rotating frame is given
by

˙̂u = ω × û (1.70)

We also know that ṙi = vi and v̇i = ai since they are simply the rate of
change of the objects position and velocity. Thus we have

as = ar + ω × vr + ω × vr + ω × (ω × r) (1.71)

= ar + 2ω × vr + ω × (ω × r) (1.72)

Now we care about how Newton’s laws look in the rotating frame, and
rearranging tells us that

ar = as − 2ω × vr − ω × (ω × r) (1.73)

So we have the normal acceleration that would be created from Newton’s
second law in a non-rotating frame, then two extra terms which are caused
by the rotation of the frame itself. The first term is the Coriolis acceleration,
and the second is centrifugal acceleration.

1.5.2 Moment of Inertia

To find the moment of inertia of a simple object positioned in a difficult
way, first find the moment of inertia of the body in it’s center of mass frame
such that the tensor is diagonal such that
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ICM =

*

,
Ixx 0 0
0 Iyy 0
0 0 Izz

-

/

With this you can then rotate the tensor to find what it would be if the
object is spun on a more difficult axis. with

IRot = R(θx)R(θy)R(θz) ICM R(θz)
−1R(θy)

−1R(θx)
−1

If the axis is still not where you want it to be, just apply the parallel
axis theorem to again shift it with

IF = IRot +Md2

1.6 Fluid Mechanics

Fluid Mechanics is right on the border of being classical mechanics and
statistical mechanics. It has to do with how a large number of particles
move together. Looking at the mass density ρ, because we cannot create or
destroy mass classically, we have

∂ρ

∂t
= −∇ · (ρv) (1.74)

Which is just the continuity equation, and says that the rate at which the
mass density is shrinking is equal to how much mass is leaving each surface
at a given time. We also define the momentum of a system by adding up
each infinitesimal mass and multiplying it by its respective velocity. This is
the same thing as

p(V, t) =

#

V
dx3ρ(x, t)v(x, t) (1.75)

An important thing to note is that the velocity v in the integral is not
specifically the velocity of any one particle, but called a velocity field since
it is defined over the entire volume, and the particles are too small for us
to be concerned about any of them individually. Newton’s third law tells us
that F = ṗ, so we first define the force field

F(V, t) =

#

V
dx3f(x, t) (1.76)
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Let’s match Newton’s third law and find
#

V
dx3f(x, t) =

d

dt

#

V
dx3ρ(x, t)v(x, t) (1.77)

Conservation of momentum (also called Euler’s equations) gives us

ρ

0
∂v

∂t
+ (v ·∇)v

1
= f (1.78)
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Chapter 2

Statistical Mechanics and
Thermodynamics

2.1 Laws of Thermodynamics

1. The change in internal energy of a system is equal to the heat added
minus the work it does

dE = δQ− δW (2.1)

The reason why we write the squiggles is because this is true no matter
how you change the system, as we must still have conservation of
energy, but if we have cases where we move between equilibriums we
can then write that δQ = TdS and δW = PdV . In general TdS ≥ δQ,
for instance a freely expanding gas, which does not exchange heat, but
since it has more places for each molecule to be, increases in entropy.

2. Entropy of the universe always increases

∆S ≥ 0

Is a statement that the equilibrium state is preferred for a system, so if
a system is changed, it is at first not in equilibrium, then moves towards
equilibrium, where the entropy is maximized, so the change in entropy
will be increased. Equilibrium can be thought of as a state where
any process and its time reversal have equal probability. Detailed
Balance says that if you have two processes (1,2) → (3,4) they are
just as likely as (3,4) → (1,2)

25
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3. Entropy of a perfect crystal (one state) goes to zero as temperature
goes to zero

S → 0 as T → 0

2.2 Thermodynamics

Thermodynamics has to do with huge numbers of particles that we can’t eas-
ily keep track of individually. For classical mechanics, our ”state variables”
were things like positions and momentum in the Hamiltonian formulation.
In Thermodynamics, instead of trying to keep track of 1023 pairs of position
and momenta, we just keep track of a few macroscopic things that can tell
us things about the system from a macroscopic point of view.

Here our ”state variables” are p, T, V, S out of which we are able to de-
scribe everything.1 The issue is that these variables are all netted together
in often mathematically unfriendly ways and in general are not indepen-
dent of one another. We get around this by just taking a bunch of partial
derivatives all over the places, holding this or that constant.

We start with the first law of Thermodynamics

dE = δQ− δW (2.2)

So long as each time we infinitesimally change the system, we wait for it to
equilibrate before touching it again (a quasistatic process), we can use the
equalities

dE = TdS − pdV (2.3)

In general

T δS ≥ δQ (2.4)

This is because entropy can change without heat being added to the system,
for instance a free expansion of a gas. Rearranging the first law to find
entropy, we get

dS =
1

T
dE +

p

T
dV (2.5)

We are also free to think of the energy as being a function of T and V , so

dE =
!dE
dT

"

V
dT +

!dE
dV

"

T
dV (2.6)

1I’m not entirely sure why these were chosen., as entropy itself is non-trivial to measure,
maybe its the leftover variable?
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Which tells us

dS =
1

T

!dE
dT

"

V
dT +

1

T

%
p+

!dE
dV

"

T

&
dV (2.7)

But also

dS =
!dS
dT

"

V
dT +

! dS

dV

"

T
dV (2.8)

Which shows us one of the many funny relationships we get with the partial
derivatives

!dS
dT

"

V
=

1

T

!dE
dT

"

V
(2.9)

! dS

dV

"

T
=

1

T

%
p+

!dE
dV

"

T

&
(2.10)

Going back to equation 2.6, by definition, we have the specific heat as Part
of this is easy since by definition

cv ≡
!dQ
dT

"

V
=

!dE
dT

"

V
(2.11)

For the next one, we can rearrange equation 2.10 after using the Maxwell
square (Section 2.2.2) to find

! ∂S

∂V

"

T
=

! ∂p

∂T

"

V
(2.12)

Plugging this in we get

T
! ∂p

∂T

"

V
− p =

!dE
dV

"

T
(2.13)

Which is often useful when given an equation of state i.e. function that
contains P as a function of the other variables. I still don’t have a solid
grasp as to the best algorithm for finding these relationships, it seems like
trying to get somewhere by random walk.

2.2.1 Thermodynamic Potentials

The idea here is that somehow from the second law, you can write all of
these different kinds of potentials which are at a minimum when we hold
certain things about the system as constant.
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Constant Potential Minimized

S, V U - Internal Energy
T, V F - Helmholtz Free Energy
T, P G - Gibbs Free Energy
S, P H - Enthalpy
T, V, µ Φ - Grand Potential

So what we do with each of these guys is, since we know two of the things
are constant, we take the derivative of the potential with respect to either
of the other two state variables and set it to zero. We can then solve that
equation for whatever we are looking for. The Helmholtz free energy can be
written as

F = U − TS = −kT lnZ (2.14)

2.2.2 Thermodynamic Square

As a reminder

U = Internal Energy (2.15)

H = Enthalpy (2.16)

G = Gibbs Free Energy (2.17)

F = Helmholtz Free Energy (2.18)

A nice mnemonic for remembering:

Good Physicists Have Studied Under Very Fine Teachers.

1. Start with a potential (e.g. F )

2. Pick the two variables at the opposite corners, noting their signs (e.g.
−P , −S)
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3. Now multiply those terms by their term furthest from them, forgetting
about the sign. This gives us

dF = −SdT − pdV

4. If you have non-fixed number of particles, just add +µdN to whichever
potential you are looking at

This gives us the natural way to express whatever potential we obtained,
in terms of the differentials, so

F = F (T, V ) (2.19)

We can also obtain the maxwell relations with the square once we find
the definition of the potential we chose, we can say

dF =
!∂F
∂T

"

V
dT +

!∂F
∂V

"

T
dV (2.20)

We know by definition that

∂2F

∂T∂V
=

∂

∂V

!∂F
∂T

"

V
=

∂

∂T

!∂F
∂V

"

T
(2.21)

So looking at the prefactors on our initial expression for the potential, we
can find that

−
! ∂S

∂V

"

T
= −

! ∂p

∂T

"

V
(2.22)

We can do the same trick to find the rest, there is one for each potential.
You can also look and see you can obtain these factors by taking a ”U”
shape in the box. In the above case we take the top row, then the bottom
right corner, is equal to the bottom row, then the top right corner.

2.3 Quasi-Static (Reversible) Process

∆S = 0

As the system changes, it does so by changing between equilibrium states
the entire time. Because it is in equilibrium the entire time, we don’t change
entropy.
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2.4 Ideal Gas

An ideal gas is just a gas that doesn’t interact with the other molecules in
the gas, and behaves as if each of the molecules were just alone. We calculate
the partition function for just one of the particles with

Z1 =
1

h3

#
dx3

#
dp3e−βp2/2m (2.23)

Which is just adding up all the possible states it could be in. It’s energy
is just kinetic. We can actually evaluate this integral explicitly using a
Gaussian integral trick giving us

Z1 =
V

h3

!
2πmkT

"3/2
(2.24)

Since the particles don’t interact, the total partition function, which is the
normalizing factor considering all states, is just all of the individual ones
multiplied together, normalized by 1/N ! due to a strange paradox called the
Gibb’s paradox.

Z =
1

N !
ZN
1 =

V N

h3N !

!
2πmkT

"3N/2
(2.25)

The free energy of a system is defined as

F = −kT lnZ (2.26)

And we know that one of Maxwell’s relations tells us

P = −
!dF
dV

"

T,N
(2.27)

This formula in general tells us the equation of state and is true for any type
of system. Using our expression for the partition function and plugging into
this, we can find the equation of state for an ideal gas, which we all know
and love

PV = NkT (2.28)

2.4.1 Isotherms

From the equation of state, we see that if temperature is constant for a pro-
cess, we must have that the product of pressure and volume is also constant

PV = const (2.29)
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2.4.2 Adiabats

Adiabatic expansion happens when there is no heat transferred to or from
the system, so

δQ = 0 (2.30)

So looking at the first law, we see

dU = −PdV (2.31)

We know for an ideal gas, the internal energy U is only dependent on tem-
perature, and after also plugging in for the ideal gas law

3

2
NkdT = −NkT

V
dV (2.32)

Rearranging and integrating we see that
#

dT

T
= −2

3

#
dV

V
(2.33)

lnT = −2

3
lnV + C (2.34)

Exponentiating, we have

TV 2/3 = eC (2.35)

Now plugging in the equation of state once more, we arrive at

PV 5/3 = NkeC (2.36)

Or, since the number of particles is held fixed, we have that

PV 5/3 = const (2.37)

2.4.3 Free Expansion

In a free expansion, the gas does no work, so

dW = 0 (2.38)

and if the process is adiabatic

dQ = 0 (2.39)

Which tells us the change in internal energy is zero

dU = dQ− dW (2.40)

So with the ideal gas law, we get

PiVi = PfVf (2.41)
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2.5 Entropy

Entropy can be thought of as a unit of information. The mathematical
definition of entropy is given by

S = kB lnΩ (2.42)

Where Ω is the number of possible ways a given system could be arranged,
each with equal probabilities. The entropy is a state variable, and can be
evaluated explicitly for a given system, i.e. a system will have a definite
entropy. What we mean by ”number of ways the system could be arranged”
is the amount of configurations we could put all of the small pieces together
that make up the system (typically all the molecules) that give us the exact
same macroscopic quantities.

The second law tells us that number of ways that the universe could be
organized is always increasing in time until it reaches equilibrium. There is
speculation that this should in some way tell us more about time itself, as
the two are entwined together in way a which is still one of Physics great
mysteries2. Another more general definition is given by

S = −
N$

i=1

Pi lnPi (2.43)

Where we sum over the probabilities that the system is in the state
1, 2, ...N . For instance if there are two energies (0, ε) possible, you will
sum over those states for the entropy. This definition must also include
states which are degenerate in energy. The reason for the minus sign is that
the logarithm of a fraction is negative, so to get entropy positive, we swap
signs. This expression reduces to equation 2.42 in the case where all the
probabilities are equal.

The entire game of statistical mechanics boils down to try to maximize
this quantity (equation 2.43) under constraints using Lagrange multipliers.
Two simple constraints are

2https://en.wikipedia.org/wiki/Arrow_of_time

https://en.wikipedia.org/wiki/Arrow_of_time
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N$

i=1

Pi − 1 = 0 (2.44)

N$

i=1

EiPi − E = 0 (2.45)

(2.46)

These are the constraints for the canonical ensemble. So using the multipli-
ers

S′ = −
N$

i=1

Pi lnPi − α
% N$

i=1

Pi − 1
&
− β

% N$

i=1

EiPi − E
&

(2.47)

We now look for the extremum of the entropy, which will be positive since
Pi is always positive, and − lnPi is also always positive.

∂S′

∂Pi
= − lnPi + 1− α− βEi (2.48)

= 0 (2.49)

We see we have now almost accidentally obtained an expression for each Pi,
which we can get by shifting variables and exponentiating. We first define
1− α = lnZ

Pi =
1

Z
e−βEi (2.50)

This is the Boltzmann distribution, found only using the constraint of
maximum entropy, total energy, and probability conservation. This allows
us to define the partition function Z plugging into equation 2.44 with

N$

i=1

e−βEi = Z (2.51)

Which acts like a normalization factor for the probabilities. Now plugging
into equation 2.45, we get

N$

i=1

1

Z
e−βEiEi = E (2.52)
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We now see that the following identity holds, which lets us express the
average energy as a function of only the partition function

E = − 1

Z

∂Z

∂β
= −∂ lnZ

∂β
(2.53)

In the continuum limit, we get

S = −
#

dV ρ ln ρ (2.54)

Where ρ is the probability density and we integrate over the volume in
phase space p, q as we define the states as when an atom has some fixed
p, q. This has an identical form to the density matrices used in Quantum
Mechanics (Equation 3.134), which is pretty weird.

2.6 Temperature

Temperature is the measure of the average kinetic energy of a system. It is
defined as

1

T
=

∂S

∂E
(2.55)

It tells you how much the entropy changes by when you change the
average energy of the system. It can be shown using equation 2.50 that the
entropy looks like

S = k(βE + lnZ) (2.56)

Thus

dS = Edβ + βdE +
∂ lnZ

∂β
dβ (2.57)

= Edβ + βdE − Edβ (2.58)

= βdE (2.59)

Which tells us that

1

T
= β (2.60)

So temperature is in fact just a Lagrange Multiplier.
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2.7 Partition Function

The real secret behind getting good at statistical mechanics is just getting
fancy with how you take derivative of the partition function. For instances
let’s look at the specific heat capacity

Cv =
∂〈E〉
∂T

=
∂

∂T

% 1
Z

N$

i=1

Eie
−Ei/kT

&
(2.61)

= − 1

Z2

N$

i=1

Eie
−Ei/kT

∂Z

∂T
+

1

kT 2Z

N$

i=1

E2
i e

−Ei/kT (2.62)

It can be shown that eventually we get an expression that relates the specific
heat capacity to the average fluctuations in energy which is super weird.

〈∆E2〉 = CvkT
2 (2.63)

2.8 Ensembles

Usually when we need statistical mechanics, it is because we care about
how fast a block of ice melts or the spreading out of a gas. These objects of
interest are called systems.

2.8.1 Microcanonical Ensemble

Here, because the system can have only one energy level, we look for states
within that energy E, again using Lagrange multipliers with

S′ = −
N$

i=1

Pi lnPi − α
% N$

i=1

Pi − 1
&

(2.64)

Taking the derivative, we see that

∂S′

∂Pi
= − lnPi + 1− α (2.65)

= 0 (2.66)

So the probability that the system is in any of it’s states with total energy
E is given by a constant, with

Pi = e1−α =
1

Z
(2.67)
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2.8.2 Grand Canonical Ensemble

We now pretend we have a system A with Nr at energy Es which is free to
exchange particles and everything with another system A′ at E′

s. Under the
constraints that

Ei + E′
i = E(0) (2.68)

Nr +N ′
r = N (0) (2.69)

We have different indices for the energy and particle number because there
can be states with differing number of particles Nr which all have the same
energy Ei. Our task is to find the probability Pi,r that the system A is in
some given state Ei with number of particles in it Nr. It is legitimate to
think that this probability should be proportional to the amount of ways you
can organizes all the molecules and their energy to get exactly the energy
in the other system A′ to be E(0) − Ei

Pi,r(Ei, Nr) ∝ Ω′(E(0) − Ei, N
(0) −Nr) (2.70)

We are also going to pretend the system A is much smaller than the other,
so Ei ≪ E(0) and Nr ≪ N (0), which lets us Taylor expand the number of
ways we can arrange the system, after taking the natural log to keep it’s
extensive nature.

lnΩ′(E(0) − Ei, N
(0) −Nr) = lnΩ′(E(0), N (0))−

%∂ lnΩ′

∂E′

&
Ei −

%∂ lnΩ′

∂N ′

&
Nr

(2.71)

From here, we identify constants as 3

%∂ lnΩ′

∂E′

&
=

1

kT

%∂ lnΩ′

∂N ′

&
= − µ

kT
(2.72)

Exponentiating the expression, we see that

Pi,r ∝ exp
%
− β(Ei − µNr)

&
(2.73)

We can then normalize everything to find that

Pi,r =
e−β(Ei−µNr)

2
i,r e

−β(Ei−µNr)
(2.74)

3There is likely a better way to do all of this, but I haven’t found it
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2.9 Distributions

To obtain the distributions, we discretize each of the energies, which is what
happens from Quantum Mechanics. For a given energy level of the entire
system Ei, it should be the sum of the number of particles in each discretize
energy level ε multiplied by ε itself.

Ei = n1ε1 + n2ε2 + n3ε3 + ... (2.75)

We also assume that there is some function µ called the chemical potential
which tells us how much energy it takes to add another particle to the system.
The total energy from the chemical potential µ is given by

µN = µ(n1 + n2 + n3 + ...) (2.76)

This gives us our full partition function as

Q =
$

e−β(n1ε1+n2ε2+n3ε3+...)+βµ(n1+n2+n3+...) (2.77)

Where the different n’s are how many particles are in each of the discretized
energy levels. We of course also have the constraint that

n1 + n2 + n3 + ... = N (2.78)

This partition function is actually huge in general, because each of the n1, n2,
etc are currently unbounded and could be any number. So the sum has to
be over all possible combinations of them. Thankfully however, we are free
to break up the partition function however we like as long as we eventually
enumerate over all the possible states. To show this, let’s pretend that we
have only two energy levels ε1, ε2 making the full partition function

QT =
$

n1

$

n2

e−β[n1ε1+n2ε2−µ(n1+n2)] =
$

n1

e−β(ε1−µ)n1
$

n2

e−β(ε2−µ)n2 = Q1Q2

(2.79)

So in fact the total partition function is just the product of each of the
individual ones. Lets break up the partition function for how many particles
nk are in the kth energy level εk, so

Q =
3

k

Qk (2.80)
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This gives us the partition function for the number of particles in each
discrete energy level εk as

Qk =
$

n

e−β(εk−µ)n (2.81)

Where we sum over n, which can take on as many values as are allowed
for that discrete level. From here, we can do some playing around with the
mini partition function Qk to find the average amount of particles in the
discretized state εk is

〈nk〉 =
$

n

nPn =
1

Qk

$

n

ne−β(εk−µ)n (2.82)

We see that this is basically the same thing as taking the derivative of the
partition function Qk. Working everything out, we find

〈nk〉 =
1

βQk

∂Qk

∂µ
=

1

β

∂ lnQk

∂µ
(2.83)

2.9.1 Fermi-Dirac

In Fermi Dirac statistics, because of the Pauli Exclusion principle, we have
to have that

nk = 0 or 1 (2.84)

I.e. there can only be a maximum of one particle in each of the given
energy levels. The partition function Qk is calculated looking at all possible
permutations of states and values of nk, but there are only two possibilities,
giving us

Qk = 1 + e−β(εk−µ) (2.85)

To calculate the average number of particles at the given energy level, we
can just plug this into equation 2.83 to find the average number of particles
at a given energy to be

〈nk〉 =
1

eβ(εk−µ) + 1
(2.86)

This makes sense as it will never be less than 1 in most standard cases.
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2.9.2 Boltzmann

This is the classical distribution expressed as

pi ∝ e−εi/kT (2.87)

2.9.3 Bose-Einstein

Here there can be any number of particles in the same state, so the sum
goes to infinity. Making the partition function look like

Qk =

∞$

n=0

e−β(εk−µ)n =

∞$

n=0

!
e−β(εk−µ)

"n
(2.88)

We recognize that the number inside the exponent n will always be less than
1, so this is in fact a Geometric series, giving us

Qk =
1

1− e−β(εk−µ)
(2.89)

Taking the same derivative with equation 2.83, we get

〈nk〉 =
1

eβ(εk−µ) − 1
(2.90)

We see that as β = 1/T → ∞ the occupation number will explode and there
will be tons of particles in the state nk. Another important fact is that for
photons, chemical potential µ = 0.

2.9.4 Bose-Einstein Condensate

Since there is not limit to how many bosons can occupy the same state, there
is a certain temperature at which nearly all the particles are ”condensed” to
the lowest possible state. This is the Bose- Einstein Condensate. The math
to figure this out is very tricky. How we will find this temperature is first
looking at the average number of molecules in all the excited states. We
do this by simply adding up the average number of particles in each energy
level. In integral form

Ne =

#
dεi

gi

eβ(εi−µ) − 1
(2.91)

Where we have already used the average number of particles in each energy
level as

〈ni〉 =
1

eβ(εk−µ) − 1
(2.92)
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The real interesting thing about the Bose Einstein condensate come from
the dimensionality of the phase space. We will get different results for the
critical temperature depending on the phase space allocated to the particles
themselves. Let’s calculate the the number of particles in the excited state
in three dimensions, and just normal kinetic energy

Ne =
1

h3

#
dp3

#
dx3

1

eβ(p2/2m−µ) − 1
(2.93)

=
4πV

h3

# ∞

0
dp

p2

eβ(p2/2m−µ) − 1
(2.94)

Remember, the ground state does not contribute to this sum since the energy
is zero. The integral looks quite intimidating, so we have to use some tricks
to evaluate it. Let’s start by factoring out the denominator

Ne =
4πV

h3

#
dp

p2

eβ(p2/2m−µ)

1

1− e−β(p2/2m−µ)
(2.95)

Now the energy is always going to be greater than the chemical potential
µ, so the right term is in fact a Geometric series, in the same way we first
wrote the Bose - Einstein distribution

Ne =
4πV

h3

#
dp

p2

eβ(p2/2m−µ)

∞$

n=0

e−βn(p2/2m−µ) (2.96)

=
4πV

h3

#
dp p2

∞$

n=0

e−β(n+1)(p2/2m−µ) (2.97)

Now we shift the order of the sum and the integral, and shift the start of
the sum, so we get

Ne =
4πV

h3

∞$

n=1

eβnµ
# ∞

0
dp p2e−βnp2/2m (2.98)

We can evaluate this integral just doing our normal Gaussian integration
after taking the derivative (see the math section) to find

Ne =
4πV

h3

∞$

n=1

eβnµ
√
π

4

!2m
βn

"3/2
(2.99)

= V
!2πm
h2β

"3/2
∞$

n=1

eβnµ

n3/2
(2.100)
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Since the ground state energy is zero, and it is necessary that ε− µ > 0 for
all energies, we need that

µ < 0 (2.101)

Looking the largest possible value this sum could be (where µ = 0), we get
the definition of the Riemann Zeta function (See ...)

Ne = V
!2πm
h2β

"3/2
∞$

n=1

1

n3/2
=

!2πmkT

h2

"3/2
ζ(3/2) (2.102)

So this is the maximum number of particles that we can fit into a volume V
at temperature T in the excited states when there is no chemical potential
between the molecules, meaning we are free to add or subtract as many as
we want. The question becomes, where do they go? Into the ground state.
We must have that

N = N0 +Ne (2.103)

The first fill up the excited states before condensing to the ground state. We
defined a critical temperature at which all the particles go into the excited
states before the condensate starts to form with

N =
!2πmkTc

h2

"3/2
ζ(3/2) (2.104)

Which let’s us find the critical temperature with

Tc =
! N

V ζ(3/2)

"2/3 2πh̄2

mk
(2.105)

Thus

N0 = N
%
1−

! T

Tc

"3/2&
T < Tc (2.106)

With these types of integrals we will always get something with the Zeta
function, the smallest dimensionality that barely won’t converge is

ζ(1) = 1 +
1

2
+

1

3
+

1

4
+ ... (2.107)

Which is the Harmonic series, which does not converge, which tells us that
the Bose-Einstein condensate cannot form in one dimension. Apparently the
evolution of many complex systems, including the World Wide Web follow
Bose statistics and can under go Bose-Einstein condensation.4

4Bianconi, G.; Barabsi, A.-L. (2001). ”BoseEinstein Condensation in Complex Net-
works.” Phys. Rev. Lett. 86: 563235.
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2.9.5 Stefan-Boltzmann Law

From the partition function for a photon gas, we can get a function for the
average energy of a photon gas as usual. Remember that the energy of a
photon is ε = |p|c, since they don’t have mass. Eventually we find that the
power, which is energy per unit time goes as

P = AεσT 4 (2.108)

This tells us the power radiated from a black-body, (which just means it
absorbs everything that hits it) is proportional to the temperature to the
fourth power. A is the surface area of the object, ε is the emissivity, which is
1 if it is a perfect blackbody, and σ is a constant from the partition function.

2.9.6 Gas - Liquid - Solids

An Einstein solid assumes all atoms oscillate in all directions with the same
frequency ω. We can easily calculate the partition function for one of parti-
cles in one of the dimensions, knowing that the energy goes as a harmonic
oscillator

Z0 =

∞$

n=0

e−βh̄ω(n+1/2) (2.109)

= e−βh̄ω/2
∞$

n=0

e−βh̄ωn (2.110)

=
e−βh̄ω/2

1− e−βh̄ω
(2.111)

=
1

2 sinh(βh̄ω/2)
(2.112)

We assume all of these oscillators are independent, so to get the full wave
function, we just have to exponentiate this 3 times, for each dimension of
the single atom, then N to consider all of the atoms in the solid.

Z = Z3N
0 (2.113)

Einstein solid particles are said to be distinguishable, so the partition func-
tion is not weighted by 1/N !
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2.9.7 Chemical Potential

We know that if we add up the average number of particles in each energy
level, we should simply get back the total number of particles, which is a
constant if particles are not allowed to leave. For both Fermi and Bose
statistics we have

N =

∞$

i=0

1

eβ(εi−µ) ± 1
(2.114)

Let’s first consider the Fermi case (with the plus sign). If we look at zero
temperature, or β = ∞, we see that if

εi < µ ni ∼
1

e−∞ + 1
= 1 (2.115)

εi > µ ni ∼
1

e∞ + 1
= 0 (2.116)

Trying the same thing for the Bose case

εi < µ ni ∼
1

e−∞ − 1
= −1 (2.117)

We obviously can’t have an expectation value of a negative particle5, so the
previous expression is wrong, the only valid energies must be

εi > µ ni ∼
1

e∞ − 1
= 0 (2.118)

But since we need to conserve particle number, we must have that all the
particles have the same energy with

εi = µ ni = N (2.119)

This is another way to see Bose-Einstein condensation.

2.9.8 Averages

For some reason if we want to find the average of a quantity that obeys
Fermi or Bose statistics, we can use

〈A〉 = 1

(2πh̄)3

#
d3p

#
d3rA

g(Epr)

eβ(Epr−µ) ± 1
(2.120)

5Could this actually account for antiparticles?
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2.10 Fermi Energy

Within a box of length L = Lx = Ly = Lz, from quantum mechanics, we
know we can expression the energy of any given state as

E =
h̄2π2

2mL2

!
n2
x + n2

y + n2
z

"
(2.121)

We can see these energy levels are degenerate, so it is conventional to imag-
ine something called the ”Fermi Sphere” which shifts the n’s to spherical
geometry, with

n2 = n2
x + n2

y + n2
z (2.122)

Since the n’s must always be positive, we take only the positive quadrant,
so 1/8th of the sphere. Since an electron can be in two spin states, this gives
the total amount of electrons in the spherical portion as

N = 2 · 1
8
· 4
3
πn3

F (2.123)

Where nF is the maximum in magnitude occupied state. Rearranging to
solve for this maximum magnitude, we have that

nF =
!3N

π

"1/3
(2.124)

The Fermi energy is defined as the energy at this maximum occupied state,
so plugging in we have

EF =
h̄2π2

2mL2

!3N
π

"1/3
(2.125)

=
h̄2

2m

!3π2N

V

"2/3
(2.126)

2.11 Liouville Theorem

We first imagine that we have some arbitrary number of systems that obey
the same Hamitonian (a ton of harmonic oscillators for example) that are
each started with different initial conditions (one is moving at 5 m/s started
at the origin, one starts at θ = π/2 with no speed, ...) we can take note
of each of their positions xi and momenta pi and draw them all together
in phase space. When drawn together we get something that looks like a
density ρ that is all the points plotted together, with more in one location
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than another etc. What we look for is how this density changes in time from
the continuity equation, with

dρ

dt
=

∂ρ

∂t
+∇ · (ρv) (2.127)

=
∂ρ

∂t
+

n$

i=1

∂(ρxi)

∂xi
ẋi +

∂(ρpi)

∂pi
ṗi (2.128)

This theorem turns out to be valid for both equilibrium and non-equilibrium
systems.

2.12 Ising Model

Used to model spin systems which have a favored state. Each object has a
given ”spin” (s1, s2, ..., sN ) and has an interaction energy with its neighbors.

The Hamiltonian is given by

H = −ε

N$

i=1

sisi+1 −
N$

i=1

hsi (2.129)

We see that when the spins are aligned (directions are the same), we min-
imize the energy, thus alignment is favorable. The second term is just the
interaction of the spin itself with the magnetic field. Using the mean field
approximation, we just pretend they are all uncorrelated and get

h′ = εν〈s〉+ h (2.130)

=⇒ H = −
N$

i=1

h′si (2.131)

Where ν is the number of nearest neighbors (i.e. in a 2D square lattice,
it is 4). Expanding

m = tanh
!h+ ενm

T

"
(2.132)

With T ≈ Tc, h = 0, m ≪ 1 We get

m =
√
3
!
1− T

Tc

"1/2
(2.133)

Where Tc = εν. Actual TC = 2.269ε in 2D, but our approximation gives us
that it is ν/2 = 4/2 = 2 considering only the nearest neighbors.
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Chapter 3

Quantum Mechanics

3.1 Fundamentals

Quantum Mechanical systems are represented by state vectors which, to-
gether with the rules for how these vectors will evolve, tell us everything
that can be predicted about a quantum system. A ”bra” is a column vector
represented as 〈ψ| and is always accompanied by a row vector called a ”ket”
represented as |ψ〉. Looking at the combination of these two, we create a
”bracket” 〈ψ|ψ〉 doing just normal vector multiplication. As an example,
let’s say our Hilbert space is just two dimensional

〈ψ| = (a∗, b∗) |ψ〉 =
0

a
b

1
(3.1)

3.1.1 Basis

Any state vector can be represented in another basis, as long as it also spans
the same Hilbert space, with

|ψ〉 =
$

n

|n〉〈n|ψ〉 (3.2)

The value 〈n|ψ〉 = cn is just a (potentially complex) number. Let us pretend
that n = a, b thus we have

|ψ〉 = |a〉〈a|ψ〉+ |b〉〈b|ψ〉 (3.3)

= ca|a〉+ cb|b〉 (3.4)

Dual correspondence tells us that the bra takes the roughly same form with

〈ψ| = c∗a〈a|+ c∗b〈b| (3.5)

47
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The chance that the state |ψ〉 is in any of the states at a given time can
be found with

Pn = |〈n|ψ〉|2 (3.6)

= |cn|2 (3.7)

This can be seen since we must have the requirement that |ψ〉 is found in at
least one of the states (and is normalized) with

1 = 〈ψ|ψ〉 (3.8)

=
$

n

〈ψ|n〉〈n|ψ〉 (3.9)

=
$

n

(〈n|ψ〉)∗〈n|ψ〉 (3.10)

=
$

n

|〈n|ψ〉|2 (3.11)

=
$

n

Pn (3.12)

3.1.2 Measurement

A measurement on a Quantum Mechanical system is not at all straight for-
ward. Firstly, all observables are real, which requires the operator associated
with them to be Hermitian with

A = (AT )∗ = A† (3.13)

Let us pretend that A spans a Hilbert space given by Equation 3.3.
Pretending that

A|a〉 = a|a〉 A|b〉 = b|b〉 (3.14)

Then

A|ψ〉 = caa|a〉+ cbb|b〉 (3.15)

Now one may think that you would get some combination of the values a
and b, but in fact you get only one! Although the chance you get one will
be weighted with probability |cn|2. Only on average will you get

〈A〉 = 〈ψ|A|ψ〉 = |ca|2a+ |cb|2b (3.16)
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When the measurement takes place, it is said that the wave function ”in-
stantaneously collapses” into one of the eigenstates of the operator A (with
the probabilities given above).

A|ψ〉 → Measurement → a|a〉 with Probability = |ca|2 (3.17)

→ b|b〉 with Probability = |cb|2 (3.18)

Operators can also be expressed as Matrices using the following rules

A =

N$

n

N$

n′

|n〉〈n|A|n′〉〈n′| (3.19)

=

N$

n

N$

n′

〈n|A|n′〉|n〉〈n′| (3.20)

=

*

+,
〈n1|A|n′

1〉 . . . 〈n1|A|n′
N 〉

...
. . .

...
〈nN |A|n′

1〉 . . . 〈nN |A|n′
N 〉

-

./ (3.21)

The placement of the off diagonals can be figured out because all operators
should act on the index they are closest to from the projection operator with
n|n1〉〈n1|A.

Quantum mechanics is strange and it turns out there are some things
you can’t know at the same time. An ”observation” of some variable (i.e.
position, momentum, etc) is represented by a respective operator denoting
that type of obervation. Two things are said to be compatible observables
if

AB|ψ〉 = BA|ψ〉 (3.22)

Which tells us the order in which we make the observations have no effect
on what we end up seeing. Written in a more succint way, the operators are
said to commute, with

AB −BA = [A,B] = 0 (3.23)

These compatible observables can be used to break degeneracy. The basic
algorithm for doing this is finding all the eigenvalues and eigenvectors for A
and B, then identifying valid combinations of the vectors that still return
unique eigenvalues when operated on by the respective matrix1. In three

1Sakurai 1.23
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dimensions it is possible to have a simultaneous ket of all x, y, z coordinates
in Cartesian, which lets us write things like

ŷ|x〉 = y|x〉 (3.24)

If it turns out that the ordering of the operators acting on the state does
matter, we say that

[A,B] ∕= 0 (3.25)

A typical example is position and momentum which do not commute, with

[x, p] = ih̄ (3.26)

3.1.3 Probability Current

We can use the continuity equation in quantum mechanics for the probability
current with

dρ

dt
= −∇ · j (3.27)

This probability current j tells us the ’probability’ flowing through a given
surface area per unit time per unit area.

j =
h̄

2mi

!
ψ∗∇ψ − ψ∇ψ∗

"
(3.28)

3.1.4 Wave Function

The wave function in relation to a ket is simply

ψ(x) = 〈x|ψ〉 (3.29)

With just this we can do a lot, including some tricks that use the fact that
all observables are Hermitian. For instance

〈x′|x|ψ〉 = x′〈x′|ψ〉 (3.30)

We can also often write expectation values as integrals by inserting mul-
tiple sets of states

〈ψ|y|ψ〉 =
#

dx

#
dx′〈ψ|x〉〈x|y|x′〉〈x′|ψ〉 (3.31)

=

#
dx

#
dx′ 〈ψ|x〉yδ(x− x′)〈x′|ψ〉 (3.32)

=

#
dx ψ∗(x)yψ(x) (3.33)
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The transformation function from x to p can be obtained with

〈x|p̂|p〉 = −ih̄
∂

∂x
〈x|p〉 (3.34)

The operator p̂ acting on its eigenket simply gives back its eigenvalue p, so
this becomes a differential equation with solution

〈x|p〉 = A exp
% ipx

h̄

&
(3.35)

Analogously in three dimensions, with a normalizing factor obtained on page
55 of Sakurai.

〈x|p〉 = 1

(2πh̄)3/2
exp

% ip · x
h̄

&
(3.36)

3.1.5 Changing Basis

Changing basis is easy when you are given two complete sets of eigenstates,
say |Sy;±〉 and|Sx;±〉. If you want to solve for

|Sy; +〉 = a|Sx; +〉+ b|Sx;−〉

Just get the coefficients because you can sum over each state, i.e

|Sy; +〉 =
$

|Sx;±〉〈Sx;±|Sy; +〉 (3.37)

= 〈Sx; +|Sy; +〉|Sx; +〉+ 〈Sx;−|Sy; +〉|Sx;−〉 (3.38)

= a|Sx; +〉+ b|Sx;−〉 (3.39)

3.2 Quantum Dynamics

Let’s say we want some operator U that changes the wavefunction, but still
preserve it’s inner product such that

1 = 〈ψ|ψ〉 = (〈ψ|U †)(U |ψ〉) (3.40)

Or more clearly, we want the property

U †U = UU † = 1 (3.41)

These are called unitary operators. Let’s pretend we have some parameter
contained in the wavefunction we want to change a small amount ε. We now
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want to find some operator that allows us to change this parameter, yet still
preserve the inner product so we don’t have to keep normalizing it. Because
the change is small, we expect it to be linear in ε, so

U(ε) = I +Gε (3.42)

Where the G is some operator to be determined, and I is the identity op-
erator and comes from the fact that if we have ε = 0, the wave function
shouldn’t change at all. Using the definition of the unitary operator, we see
that

I = U †U = (I +G†ε)(I +Gε) = I +G†ε+Gε+G†Gε2 (3.43)

Because ε is small, we forget about the squared term, and subtracting terms,
we see

G† = −G (3.44)

This is the definition of an antihermitian operator which are kind of gross,
but we know that if we define an operator as

G = −iH G† = iH† (3.45)

Thus we see that

H† = H (3.46)

And we now have a Hermitian operator which are things that describe ob-
servables in Quantum mechanics and are all over the place. These are overall
much nicer to work with. So our unitary operator can be written as

U(ε) = 1− iHε (3.47)

The nomenclature that goes around this is that H is the generator of the
change in ε.

3.2.1 Translation Operators

The position translation operator is defined as

J (dx)|x〉 = |x+ dx〉 (3.48)
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To find the mathematical representation of the operator, we let it operate
on |ψ〉

J (∆x)|ψ〉 = J (∆x)

#
|x〉〈x|ψ〉 (3.49)

=

#
dx|x+∆x〉〈x|ψ〉 (3.50)

=

#
dx|x〉〈x−∆x|ψ〉 (3.51)

=

#
dx|x〉ψ(x−∆x) (3.52)

The last step is essentially changing integration bounds. Now that we have
a function and no longer a vector, we can Taylor expand

ψ(x−∆x) ≈ ψ(x)−∆x
∂ψ(x)

∂x
(3.53)

Thus we have

J (∆x)|ψ〉 =
#

dx|x〉
%
ψ(x)−∆x

∂ψ(x)

∂x

&
(3.54)

(3.55)

Using the relation

px = −ih̄
∂

∂x
(3.56)

We can rewrite

J (∆x)|ψ〉 =
#

dx
%
1− i∆xp

h̄

&
ψ(x)|x〉 (3.57)

=
!
1− i∆xp

h̄

"#
dx|x〉〈x|ψ〉 (3.58)

=
!
1− i∆xp

h̄

"
|ψ〉 (3.59)

So we say that momentum is the generator of translation. Intuitively, we
know that if we keep acting small translations over and over again on a
state, we should be able to move it some finite amount, which is roughly
the basis for calculus itself. Let’s pretend we want to move a total amount
d but divide it up into N steps to make each step really small.

J (d)|ψ〉 =
!
J (d/N)J (d/N)...

"
|ψ〉 =

%
J (d/N)

&N
|ψ〉 (3.60)
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Let’s look at the form of that operator

%
J (d/N)

&N
=

!
1− idp

Nh̄

"N
(3.61)

In the limit that N goes to infinity, if you remember from precalculus,
this is the definition of an exponential. Thus the finite operator, obtained
by acting the infinitesimal operator many times, then becomes

J (x) = exp
%
− ixp

h̄

&
(3.62)

3.2.2 Time Evolution Operator

In the same way we found the translation operator, we can find the time
evolution operator as

U(dt)|ψ〉 = 1− iHdt

h̄
|ψ〉 (3.63)

If the Hamiltonian is not time dependent, the finite operator becomes

U(t) = exp
%
− iHt

h̄

&
(3.64)

We can now look at two subsequent time translation operations

U(t+ dt) = U(dt) U(t) (3.65)

=
!
1− iHdt

h̄

"
U(t) (3.66)

= U(t)− iHdt

h̄
U(t) (3.67)

Shifting this equation around, and since dt is already infinitesimally small,
we get the definition of the time derivative

U(t+ dt)− U(t)
dt

= − iH

h̄
U(t) (3.68)

Or

ih̄
∂

∂t
U(t) = HU(t) (3.69)
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3.2.3 Schrodinger and Heisenberg

There are two primary views as to how the machinery behind Quantum
mechanical systems evolve, which happen to also be mathematically equiv-
alent. The first, due to Schrodinger, treats the kets as moving in time but
all operators as constant.

|ψ(t)〉 = U(t)|ψ〉 (3.70)

This gives us the Schrodinger equation as

ih̄
∂ψ

∂t
= Hψ (3.71)

The second approach treats the operators as changing in time, but as if the
basis they act on is always a constant (i.e. fixed kets).

A(t)(H) = U†(t) A(S) U(t) (3.72)

Taking the time derivative of this, using equation 3.69, we get

d

dt
A(H)(t) =

% d

dt
U†(t)

&
A(S) U(t) + U†(t)A(S)

% d

dt
U
&

(3.73)

= − 1

ih̄
HU†(t) A(S) U(t) + 1

ih̄
U†(t) A(S) HU(t) (3.74)

Using the fact that the Hamiltonian commutes with the time translation
operator, by it’s definition, we get

d

dt
A(H)(t) =

1

ih̄
[A(H), H] (3.75)

This is the Heisenberg equation analogous to the Schrodinger equation,
although in my experience, used much less frequently.

3.2.4 Feynman Propagator

If we start with some arbitrary ket |ψ, t0〉, we can first time evolve it us-
ing the time evolution operator (Section 3.2.2), then insert two complete
sets of states |a〉〈a| and |x〉〈x| that the Hamiltonian will act on (from the
Hermiticity of the Hamiltonian), giving us

|ψ, t〉 =
$

a

#
dx3 |a〉〈a|x〉〈x|ψ, t0〉e−iEa(t−t0) (3.76)

=
$

a

|a〉
#

dx3 a(x)e−iEa(t−t0)ψ(x, t0) (3.77)
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We can then dot this with a new set of bra’s 〈x′|, which gives us

ψ(x′, t) =
$

a

a(x′)

#
dx3 a(x)e−iEa(t−t0)ψ(x, t0) (3.78)

=

#
dx3

$

a

a∗(x′)a(x)e−iEa(t−t0)ψ(x, t0) (3.79)

We can then identify something called the propagator K(x′, t;x, t0) as

K(x′, t;x, t0) =
$

a

a∗(x′)a(x)e−iEa(t−t0) (3.80)

Which lets us write the wave function ”propagated” into the future at a new
position as

ψ(x′, t) =

#
dx3 K(x′, t;x, t0)ψ(x, t0) (3.81)

— Might be wrong from here —

K(x′, t;x, t0) = 〈x′, t| exp
!
− i

h̄
Ĥ(t− t0)

"
|x, t0〉 (3.82)

Path integral is an expression for this transition amplitude. We divide t− t0
into N steps, and make a whole bunch of integrals

ε = (t− t0)/N (3.83)

So after breaking it up, we get

#
dq1, dq2, ...dqN−1〈q′′|(1− iεĤ)|qN−1〉〈qN−1|(1− iεĤ)|qN−2〉... (3.84)

3.2.5 Useful Operator Tricks

The essential commuation relation is

[xi, pj ] = ih̄δij (3.85)

[A,BC] = [A,B]C +B[A,C] (3.86)
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A nice consequence of this relationship is known as Ehrenfest’s The-
orem which goes as

[pi, F (x)] = −ih̄
∂F

∂xi
(3.87)

[xi, G(p)] = ih̄
∂G

∂pi
(3.88)

Another nice one is the Baker-Campbell-Hausdorff lemma can be writ-
ten as

eXY e−X = Y + [X,Y ],+
1

2!
[X, [X,Y ]] + ... (3.89)

Typically one an exam, it is easier to just Taylor expand the exponent with

eX =

∞$

n=0

Xn

n!
(3.90)

Then find some pattern in the exponent which terminates as you look at
higher and higher powers of n. This relationship shows up often in rotation
questions. Another nice one is

eAB = eAeBe−[A,B]/2 (3.91)

The generalized uncertainty relation is given as

σ2
Aσ

2
B ≥ 1

4
|〈[A,B]〉|2 (3.92)

Which gives us the classic Heisenberg uncertainty relation with A = x,B = p
as

σxσp ≥
h̄

2
(3.93)

3.3 Rotation

Also see section 1.5. We should have some generator of rotation, in the same
way we have one for time and position translation. This generator happens
to be the angular momentum operator with

D(n̂, dφ) = 1− i
!J · n̂

h̄

"
dφ (3.94)
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Applying this many, many times gives us the operator for a finite rotation

D(n̂,φ) = exp
%−iJ · n̂φ

h̄

&
(3.95)

We act this operator on a ket to find out it’s rotated form with

|αR〉 = D(n̂,φ)|α〉 (3.96)

Intuitively, we know that a rotation won’t change the size of an object, it
will just reorient it. Since the determinant of a matrix corresponds to its
size, we come up with another requirement for the rotation translators, with

det
!
D
"
= 1 (3.97)

This defines the special unitary group.

3.3.1 Spin 1/2

Starting just with Sz and it’s eigenvectors, we know

〈+|Sz|+〉 = h̄

2
(3.98)

〈−|Sz|−〉 = − h̄

2
(3.99)

Now we only have two things to remember, the definition of the ladder
operators

S± ≡ Sx ± iSy (3.100)

And the effective ”eigenvalues” that come out when the ladder operators
act on kets

J+|jm〉 = h̄
4

(j −m)(j +m+ 1)|jm+ 1〉 (3.101)

J−|jm〉 = h̄
4

(j +m)(j −m+ 1)|jm− 1〉 (3.102)

To remember these, know that it is (j − m+?)(j + m+?) and the kets
must annihilate when the operators act on a state where J+|jj〉 = 0, which
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gives us the placement of the 1. Using both of these equations, we can get
the matrix representation of Sx, Sy. Since

S+|+〉 = 0 S+|−〉 = h̄|+〉 (3.103)

(3.104)

In matrix form, we get

S+ = h̄

0
0 0
1 0

1
(3.105)

Similarly for S−

S− = h̄

0
0 1
0 0

1
(3.106)

By manipulating the equations for S±, we can find expressions for Sx and
Sy, with

Sx =
1

2
(S+ + S−) =

h̄

2

0
0 1
1 0

1
(3.107)

Sy = − i

2
(S+ − S−) =

h̄

2

0
0 −i
i 0

1
(3.108)

Sz =
h̄

2

0
1 0
0 −1

1
(3.109)

Where Sz we already knew at the start from orthogonality of the states.
These operators, as well as all angular momentum operators in general, obey
a set of commutator relations that show up frequently in exam questions.
The most important of which is likely

[Jx, Jy] = ih̄Jz (3.110)

This group of operators is non-Abelian, which synonomous with the fact
that their commutator is non-zero. They also define a Lie group which
are super important in physics for some reason. It also turns out that the
total squared angular momentum operator commutes with each direction
individually

[J2, Ji] = 0 (i = 1, 2, 3) (3.111)

(3.112)
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Some other nice ones to speed things up, but could be derived just knowing
the definitions of J± are

[J+, J−] = 2h̄Jz (3.113)

[Jz, J±] = ±h̄J± (3.114)

The matrices in each expression for Sx, Sy, Sz happen to be the Pauli
matrices

σ1 =
! 0 1
1 0

"
σ2 =

! 0 −i
i 0

"
σ3 =

! 1 0
0 −1

"

These matrices obey another important set of properties

σ2
1 = σ2

2 = σ2
3 = −iσ1σ2σ3 = I (3.115)

Where I is the identity matrix. They also have no trace and determinant
equal to negative one

Tr σi = 0 (3.116)

detσi = −1 (3.117)

A nice way to show that these matrices must be traceless starting from
the fact that rotation operator must have unit determinant (Equation 3.97)
is

det
!
D(dφ)

"
= 1 = det

!
I − iσidφ

"
= det

0
1− iσ11

i dφ −iσ12
i dφ

−iσ21
i dφ 1− iσ22

i dφ

1

(3.118)

Since dφ is small by definition we have that,

det(I − iσidφ) ≈ (1− iσ11
i dφ)(1− σ22

i dφ) ≈ −i(σ11 + σ22)dφ (3.119)

We see that the factor in the parentheses is identical to the trace of the
matrix, and the requirement that the determinant be 1 gives us

1 = 1− iTr(σi)dφ (3.120)

Therefore the trace of the Pauli matrices must be zero to keep the operator
of unit determinant for finite dφ.

In two dimensions, after working out the matrix math, we can represent
any rotation from equation 3.95 as
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D(n̂,φ) = exp
%−iS · n̂φ

h̄

&
= I cos

φ

2
− iσ · n̂ sin

φ

2
(3.121)

Take note of the extra factor of 1/2. It can also be shown that the
positive eigenstate of any spinor in relation to the z eigenstates is given as

|Sθ,φ; +〉 = cos
φ

2
|+〉+ sin

φ

2
eiθ|−〉 (3.122)

3.3.2 Entanglement

Pretend that somehow, you obtained a state that is composed of two spin
1/2 particles, 1 and 2. Both these particles live in different Hilbert spaces,
meaning that each one can be expressed as a linear combination of its own
eigenstates, let’s choose the basis along the z axis as is customary, so

|ψ1〉 =
$

i

c1i|ψ1i〉 = c1+| ↑1〉+ c1−| ↓1〉 (3.123)

|ψ2〉 =
$

j

c2j |ψ2j〉 = c2+| ↑2〉+ c2−| ↓2〉 (3.124)

This is standard quantum mechanics. The interesting part happens when
we look at the wavefunction of both of these particles together, we can get
the form of the state with the tensor product of these two states.

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 (3.125)

To save space, with spin 1/2, we often write | ↑1〉 ⊗ | ↑2〉 = | ↑↑〉. So
evaluating the full wave function by just distributing everything, we get

|ψ〉 = c++| ↑↑〉+ c+−| ↑↓〉+ c−+| ↓↑〉+ c−−| ↓↓〉 (3.126)

This is the generic state, where the coefficients are not necessarily the same
as the product of the two on the top states. If we did have that

|ψs〉 =
!
c1+| ↑1〉+ c1−| ↓1〉

"
⊗

!
c2+| ↑2〉+ c2−| ↓2〉

"
(3.127)

= c1+c2+| ↑↑〉+ c1+c2−| ↑↓〉+ c1−c2+| ↓↑〉+ c1−c2−| ↓↓〉 (3.128)

Then the system would behave as we would expect. To illustrate this, an
observation on one of the particles is represented by

I ⊗ Sz (3.129)
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I is the identity operator, and Sz is the operator that looks at the spin in
the z direction. What this expression is equivalent to is acting only on the
second state, and doing nothing to the first one. Let’s pretend someone
looks at the second particle with the Sz operator, and finds it is in the | ↑〉
state. This means that the wave function has collapsed into an eigenstate
of only | ↑〉 for the second particle, which means we have to get rid of all
of the other states and renormalize. Doing it our on equation 3.128, we see
that the wave function is now in the state

|ψs〉 = c1+| ↑↑〉+ c1−| ↓↑〉 (3.130)

=
!
c1+| ↑〉+ c1−| ↓〉

"
⊗ | ↑〉 (3.131)

So literally nothing has changed about what we know about the first particle,
which is what you would expect. These states are called separable, since we
can always act in one space without effecting the other. The generic states
on the other hand are not always separable. One of the classic examples of
these types of states is the Bell state

|ψB〉 =
1√
2

!
| ↑↑〉+ | ↓↓〉

"
(3.132)

This term can not be written simply as the tensor product of the two spaces,
since we are missing cross terms. Let’s pretend that we were somehow able to
make this state (in reality, most entanglement is done with the polarization
of photons).

Remember that we physically have two particles that together create this
wavefunction, which allows us to physically separate them in space, leaving
the wavefunction itself intact as long as an ”observation” is not made on it
along the way which would collapse the wave function.2 Let’s have that one
person, Alice, measures particle 1, and Bob measures particle 2. Pretend
that Alice measures the spin along the z direction and finds it is up, meaning
that the wave function collapsed to

|ψB〉 → | ↑↑〉 (3.133)

Where the 1/
√
2 is taken out to keep the wavefunction normalized to 1.

What this means is the state of particle 2 is now in an eigenstate of spin up,

2This is the exact reason why quantum communication is so attractive, because if a
third party tampers with the wavefunction, it ruins the coherence of the things we are
about to talk about.
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which means that at any point, whenever Bob measures the system in the
same z basis, he will necessarily find his particle in spin up.

This seems to imply faster than light communication, since the other
particle, at an arbitrarily far distance away necessarily changes the moment
Alice completes her measurement. To quote Einstein, we have ”spooky
action at a distance”. This provoked him, Poldolsky and Rosen to write
a paper about it, now know as the EPR Paradox. A nice way to gain
statistical information about a state is with the density matrix

ρ ≡
$

i

pi|ψi〉〈ψi| (3.134)

Where pi is the probability of a given state. The density operator tells us the
maximum statistical information that Alice can know about Bob’s system,
without any interaction with Bob. As soon as Bob interacts with Alice the
density matrix is changed.

The density operator has some interesting properties, lets first look at
it’s trace

tr(ρ) =
$

i

pitr(|ψi〉〈ψi|) =
$

i

pi = 1 (3.135)

The density matrix is also related to Liouville Theorem and entropy
somehow.

Quantum Computing is also interesting.3

3.3.3 Addition of Angular Momentum

In general when adding two different angular momentums the math goes as
a tensor product with

|j1〉 ⊗ |j2〉 = |j1 + j2〉 ⊕ |j1 + j2 − 1〉 ⊕ ...||j1 − j2|〉

SInce j1 and j2 have dimensionality 2j1 + 1, 2j2 + 1 respectively (from
m1,m2). So the product should have dimensionality (2j1+1)(2j2+1). The
algorithm for mathematically adding two angular momentums, first find the
maximum state where all mi were maximum. From there you know what
state correlates between the |j1, j2,m1,m2〉 and |j1, j2, j,m〉 bases. With
that just act the ladder operator on both sides

J− = J1− ⊗ 1 + 1⊗ J2−

3Nice lecture from MIT - https://www.youtube.com/watch?v=awpnsGl08bc

https://www.youtube.com/watch?v=awpnsGl08bc
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This gives you all the different m values and their coefficients from equa-
tion 3.101. To get the other j values, you want to use orthogonality between
the states, requiring that the level below the top one is orthogonal to one
which now has j − 1 instead of j, and is a linear combination of the m1,m2

states that could sum to it.

〈j1, j2, j,m|j1, j2, j − 1,m〉 = 0 (3.136)

Here you just solve for the coefficients of the ket, having them already
for the bra, and also requiring normalization. Then you repeat the whole
thing again until you get to j = 0...

3.4 Symmetries

3.4.1 Parity Operator

The parity operator π flips the coordinate of a ket, so

π|x〉 = |− x〉 (3.137)

Up to a phase. Can remember that momentum also swaps sign, since it is
distance over time

π|p〉 = |− p〉 (3.138)

Up to a phase. It turns out that the angular momentum operator actually
commutes with the parity operator from the definition of angular momentum
as

L = x× p (3.139)

Both x and p would swap in sign, which would then cancel leaving us with

[L,π] = 0 (3.140)

Also if the Hamiltonian commutes with the parity operator, it turns out
that we get parity eigenkets.
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3.4.2 Time Reversal Operator

The time reversal operator Θ changes t → −t. This obviously should change
the direction of the momentum with

Θ|p〉 = |− p〉 (3.141)

Up to a phase. But does not change the sign of the coordinate

Θ|x〉 = |x〉 (3.142)

Up to a phase. Similar to the previous section, this product now will change
the sign of the angular momentum, making it anticommute

{Θ,J} = 0 (3.143)

Kramer’s Degeneracy happens for particles of half integer spin, which
causes two unique states with the same energy, from time reversal invariance.
Make’s interesting things happen when you have odd-numbered or even
numbered systems. This degeneracy is split from magnetic fields from v ·A
in the hamiltonian, which is not time reversal invariant.

Another useful relation is

{Θ, Si} = 0 (3.144)

3.5 Solution’s to the Schrodinger Equation

3.5.1 Free Particle

ψ(r, t) =
1

(2π)3/2
ei(k·r−ωt) (3.145)

3.5.2 Hydrogen Atom

Bohr developed a lot of things involving the Hydrogen atom semiclassically
and serendipitously arrived at some results that happened to be more or less
correct using the full machinery of Quantum Mechanics. We first say that
the Energy is given by

E =
1

2
mev

2 − Ze2

4πε0r
(3.146)
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Where Z is there to account for if we have extra charges in the nucleus. We
then say that the centripetal force is cancelled by the pull of the nucleus

mv2

r
=

Ze2

4πε0r2
(3.147)

We can solve for mv2 and put it back into the expression for energy and get

E = − Ze2

2(4πε0)r
(3.148)

The big deal thing that Bohr did was call the angular momentum a quantized
value, with

L = mvr = h̄n (3.149)

He did this because classically, an electron spinning around a nucleus is
technically accelerating. An accelerating charge gives off radiation, and thus
loses energy, which would mean eventually the electron would spiral into the
nucleus. Now obviously this doesn’t happen, so this was the prescription
that Bohr came up with. Solving for the radius and plugging in the force
equation we find it is quantized as well with

rn =
4πε0h̄

2n2

Ze2m
=

n2a0
Z

(3.150)

Where a0 is called the Bohr radius. Plugging this quantized radius into our
expression for energy we get

En = − Ze2

2(4πε0)

Ze2m

4πε0h̄
2n2

= − Z2e4m

2(4πε0)2h̄
2n2

(3.151)

The maximum angular momentum value for a given n is

0 ≤ l ≤ n− 1 (3.152)

(3.153)

When transitioning states, we need

l = ±1 (3.154)

m = 0,±1 (3.155)

Which can be thought of as a photon leaving the hydrogen atom, which has
spin 1. The ground state quantum mechanically is given by

ψ100(r) = Ce−r/a0 (3.156)
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Other useful relations are

L2ψ = h̄2l(l + 1)ψ (3.157)

Lzψ = h̄mψ (3.158)

The angular portion of the Hydrogen atom is simply given by the spher-
ical harmonic with the same l,m

3.5.3 Coherent State

The Coherent state obeys the condition

a|λ〉 = λ|λ〉 (3.159)

Even though the state |λ〉 is an eigenket of a, a itself is not a Hermitian
operator. The intuition behind this state is it is meant to resemble the
classical harmonic oscillator, which has such a high n value that it can
never be annihilated (since repeated operations of a leave it unchanged). It
is also a Gaussian wave packet satisfying the minimum uncertainty with

σxσp =
h̄

2
(3.160)

which remains true for all time.

3.5.4 Infinite Square Well

Given a potential

V (x) = 0 0 ≤ x ≤ L (3.161)

V (x) = ∞ x < 0, x > L (3.162)

The general solution to the Schrodinger equation is a superposition of sines
and cosines with

ψ(x) = A sin(kx) +B cos(kx) (3.163)

We can then plug in boundary conditions to get rid of one of these if we
choose a nice coordinate system, and find

k =
nπ

L
(3.164)

Which gives us the energy as

E =
h̄2k2

2m
=

h̄2π2n2

2mL2
(3.165)
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3.5.5 Harmonic Oscillator

These guys are critical to success with harmonic oscillator questions

a =

5
mω

2h̄

!
x+

i

mω
p
"

(3.166)

a† =

5
mω

2h̄

!
x− i

mω
p
"

(3.167)

x =

5
h̄

2mω
(a† + a) (3.168)

p = i

5
mh̄ω

2
(a† − a) (3.169)

As are these relations

[a, a†] = 1 (3.170)

a|n〉 =
√
n|n− 1〉 (3.171)

a†|n〉 =
√
n+ 1|n+ 1〉 (3.172)

Can simply find the wave function for a ladder system because it is
required that

a|0〉 = 0 (3.173)

Plugging in a in the x basis, we get

〈x|a|0〉 = 0 =

#
dx〈x|a|x′〉〈x′|0〉 =

!
x+

h̄

mω

∂

∂x

"
ψ0(x) (3.174)

Rearranging everything, we get

−mω

h̄
xdx =

dψ

ψ
(3.175)

Integrating gives us the wave function as

ψ0(x) = Ce−
mω
2h̄

x2
(3.176)

From here, we can just act the a† operator on the state to find all the next
ones, with

ψn(x) = An(a
†)nψ0(x) (3.177)
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3.6 Particle in a Magnetic Field

Considering just a particle in a magnetic field, the Hamiltonian of the system
is given by4

H =
1

2m
Π2 =

1

2m

!
p− qA

"2
(3.178)

Where p is of course the canonical momentum which is the sum of the
kinetic momentum Π, which comes just from the physical movement of the
mass, and the momentum from the field qA. We can expand the Hamilto-
nian to take the form

H =
1

2m

%
p2 − q

!
p ·A+A · p

"
+ q2A2

&
(3.179)

Since p = −ih̄∇ and ∇ ·A = 0, we have that p ·A = A ·p from the product
rule. For a stationary magnetic field we can write the magnetic potential as

A = −1

2
x×B (3.180)

This is the Symmetric gauge which will be covered later. This gauge lets us
find an expression for the term in braces in Einstein notation with

2A · p = ih̄
!
x×B

"
·∇ = ih̄εijkxiBj∂k (3.181)

= ih̄εijkxi∂kBj (3.182)

= −ih̄εikjxi∂kBj (3.183)

= −ih̄
!
x×∇

"
·B (3.184)

= L ·B (3.185)

Since the field does not change in space making its derivative zero and
L = x×−ih̄∇. We can also simplify the last term in the Hamilonian with

A2 =
1

4

!
(x×B) · (x×B)

"
=

1

4

!
x2B2 − (x ·B)2

"
(3.186)

(3.187)

If we take the magnetic field to be B = (0, 0, B), we have our Hamiltonian
as

H =
p2

2m
− q

2m
L ·B+

q2B2

8m
(x2 + y2) (3.188)

4http://www.tcm.phy.cam.ac.uk/~bds10/aqp/lec5.pdf

http://www.tcm.phy.cam.ac.uk/~bds10/aqp/lec5.pdf
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The first term with a magnetic field component is called the paramagnetic
component, and the last term is called the diamagnetic component. We
then define the gyromagnetic ratio as

µl =
q

2m
L (3.189)

There is an addition analogous quantum gyromagnetic ratio given by twice
this value with

µs =
q

m
S (3.190)

3.6.1 Landau Levels

A good resource is this.5 It turns out that when a charged particle is placed
in a magnetic field, it’s energy becomes quantized in a way identical to the
harmonic oscillator. Taking the magnetic field to be a constant in the z
direction

B = (0, 0, B) (3.191)

We are then free to choose a gauge that works best for the problem we
have. Two typical choices are

• Symmetric Gauge

A =
B

2
(−y, x, 0) (3.192)

This makes our Hamiltonian rotationally invariant

• Landau Gauge

A = B(−y, 0, 0) (3.193)

This makes the Hamiltonian translationally invariant

The Hamiltonian that is usually looked at is just the kinetic energy term,
since we have no potential, which tells us that

H =
1

2m
Π2 =

1

2m

!
p− qA

"2
(3.194)

5http://hitoshi.berkeley.edu/221a/landau.pdf

http://hitoshi.berkeley.edu/221a/landau.pdf
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With

p = Π+ qA (3.195)

Where p is of course the canonical momentum, and is the sum of the kinetic
momentum Π, which comes just from the physical movement of the mass,
and the momentum from the field qA. Breaking up the Hamiltonian with
the magnetic field only in the z direction using the Landau Gauge, we have

H =
1

2m

%
(px + qBy)2 + p2y + p2z

&
(3.196)

We see that

[px, H] = 0 (3.197)

[pz, H] = 0 (3.198)

So we can have simultaneous eigenstates of the Hamiltonian and px, pz so
we can rewrite these as their eigenvalues h̄kx, h̄kz. However, py does not
commute with the Hamiltonian, but we now it in the form of a Harmonic
oscillator in y, since it has a momentum squared term and a position squared
term with

H =
h̄2k2z
2m

+
1

2m

%!
h̄kx + qBy

"2
+ p2y

&
(3.199)

=
h̄2k2z
2m

+
1

2m

%
Π2

x +Π2
y

&
(3.200)

From here, we make a few observations and some new notations, to get it
into the regular looking form of a harmonic oscillator. First we define what
are essentially the raising and lowering operators for kinetic momentum

Π± = Πx ∓ iΠy (3.201)

The sign convention here is opposite the typical ladder operator, but its
what they use for some reason. In a way similar to what we do with the
harmonic oscillator, lets look at the term

Π+Π− = (Πx − iΠy)(Πx + iΠy) (3.202)

= Π2
x − iΠyΠx + iΠxΠy +Π2

y (3.203)

= Π2
x +Π2

y + i[Πx,Πy] (3.204)



72 CHAPTER 3. QUANTUM MECHANICS

We see we have a term that exactly matches the one in our Hamiltonian.
Now we can evaluate the commutator term, finding in fact there is a constant
commutation relation no matter what gauge we choose with

[Πx,Πy] = ih̄qB (3.205)

Plugging in we see that

Π2
x +Π2

y = Π+Π− + h̄qB (3.206)

So our Hamiltonian looks like

H =
h̄2k2z
2m

+
1

2m

!
Π+Π− + h̄qB

"
(3.207)

This is the same form of a normal harmonic oscillator in x and y, just from
the placement of the operators, but now in order to get it all the way there
we have to match coefficients

1

2m

!
Π+Π− + h̄qB

"
= h̄ω

!
a†a+

1

2

"
(3.208)

Looking at the constant first

h̄qB

2m
=

h̄ω

2
→ ω =

qB

m
(3.209)

This is the cyclotron frequency. We can then reverse engineer the true ladder
operators knowing the constants should be the same in front of both

1√
2m

Π+ =

5
h̄qB

m
a† (3.210)

This gives us

a† =
1√

2h̄qB
(Πx − iΠy) (3.211)

a =
1√

2h̄qB
(Πx + iΠy) (3.212)

So our final Hamiltonian, after being painfully manipulated is

H =
h̄2k2z
2m

+ h̄ω
!
a†a+

1

2

"
(3.213)

We can find the eigenstates in the same way we find those for the harmonic
oscillator (Equation 3.175), and using separation of variables for z. The
corresponding state is also an eigenstate of the Lz operator with

Lzψn = h̄nψn (3.214)

But this quantity is in fact gauge dependent because we used canonical
momentum and not kinetic momentum, which depends on gauge.
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3.6.2 Fractional Quantum Hall Effect

In the ground state Landau Level, you can show there is stability given the
number of states (degeneracy) for the ground state is given by

N =
1

k

eΦ

hc
(3.215)

where k is some odd number

3.7 WKB Approximation

The WKB approximation is useful for when you have a potential that varies
with position V (x) or barriers that become larger than the available energy
of the system.

1. Rewrite the Schrodinger equation

∂2

∂x2
ψ = −p(x)2

h̄2
ψ (3.216)

where

p(x) =
4

2m[E − V (x)] (3.217)

2. Guess the form

ψ(x) = A(x)e−iφ(x) (3.218)

3. Plug it in and get some differential equations you can solve (in Grif-
fith’s) and find that

A =
C4
p(x)

φ(x) =
1

h̄

# x

0
p(x′)dx′ (3.219)

4. Plug in and see that the general solution is given by

ψ(x) =
14
p(x)

!
C+e

iφ(x) + C−e
−iφ(x)

"
(3.220)

=
14
p(x)

!
C1 sinφ(x) + C2 cosφ(x)

"
(3.221)
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5. From here we use boundary conditions, by requiring things like ψ(0) =
0 and ψ(a) = 0 if we have that V (0) = V (a) = ∞ etc. This gives us
conditions on the integral equation for φ(x) like

φ(a) =
1

h̄

# a

0
p(x)dx = nπ (3.222)

There are some nasty integrals involved that I don’t full understand,
but reading Griffith’s pg 289 could help.

3.8 Variational Method

1. Guess a trial wave function |φ(α)〉 of some flexible parameter α

2. Normalize that wave function

3. Calculate the expectation value of the energy using that wave function
〈φ(α)|H|φ(α)〉 = E(α)

4. Take the derivative of the energy with respect to α and set it equal to
zero to solve for α in terms of other constants.

5. Plug it back in to E(α) to come up with an upper bound on the ground
state energy.

3.9 Perturbation Theory

All time-independent perturbation questions should be solved as

1. Are the zeroth order energies degenerate? If they aren’t skip to 3

2. Break the degeneracy and come up with new zeroth order states

3. Use the time-independent perturbation using the zeroth order states
to find perturbed states and energy shifts

3.9.1 Time Independent - Non Degenerate

Always first check if the zeroth order energies are degenerate first before
following this approach! The idea here is you can write your Hamiltonian
as

H = H0 + λV (3.223)
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Where λ is some small value, and you know all the eigenstates of H0 already.
With some clever math involving the projection operator and expansion in
powers of λ one gets the first order energy shift6 as

∆(1)
n = 〈n(0)|V |n(0)〉 (3.224)

The corresponding first order ket is

|n(1)〉 =
$

k ∕=n

〈k(0)|V |n(0)〉
E

(0)
n − E

(0)
k

|k(0)〉 (3.225)

Can remember the conjugation here since its almost the projection operator
|k(0)〉〈k(0)|. The second order energy shift is given by

∆(2)
n =

$

k ∕=n

|〈k(0)|V |n(0)〉|2

E
(0)
n − E

(0)
k

(3.226)

All the remaining kets and shifts become much more complicated and its
best to assume you won’t need to know them. One can remember the order
of the minus sign in a backwards way by remembering that second order
shifts to the ground state of any system will always decrease its energy.

3.9.2 Time Independent - Degenerate

If it happens that there are two (or more) kets in our Hilbert space have

the same energy, lets say E
(0)
a = E

(0)
b then Equation 3.225 will go to infinity

since one of the terms will divide by zero. We avoid this by also making the
numerator also go to zero. The key here is to take clever linear combinations
of the degenerate subspace (here |a(0)〉, |b(0)〉) that do just that.

|α(0)〉 = c1|a(0)〉+ c2|b(0)〉 (3.227)

|β(0)〉 = c3|a(0)〉+ c4|b(0)〉 (3.228)

Where we want 〈α|V |β〉 = 〈β|V |α〉 = 0. The way we do this is write
the perturbation matrix out with the states we start with, then diagonalize
it (Section 5.8.3) thus making the off-diagonal terms writtern earlier zero.

The eigenvalues tell us the first order shift ∆
(1)
n , and the eigenvectors tell us

the correct linear combinations for the degenerate subspace. From here we

6Sakurai pg. 312
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can just use non-degenerate perturbation theory to calculate stuff like |n(1)〉
and ∆

(2)
n using |α(0)〉 and |β(0)〉. Griffith’s pg 229 outlines a nice way to find

the states beforehand, look for an operator A that obeys

[A, V ] = 0 (3.229)

We can use eigenstates of that operator and were good as long as both the
degenerate kets have different eigenvalues of A. A common example would
be some angular momentum operator like Sz

3.9.3 Time Dependent

Now we take an almost entirely different approach and forget about the λ
expansion, first order energy shift, etc, and have that our Hamiltonian looks
like

H = H0 + V (t) (3.230)

We always assume time seperability of our kets so any state can be repre-
sented as

|α; t〉 =
$

n

cn(t) exp
%
− iEnt

h̄

&
|n〉 (3.231)

Where we now have time-dependent coefficients. Now just looking at the

Schrodinger equation, (Where of course 〈n|α; t〉 = cn(t) exp
%
− iEnt

h̄

&
),we get

ih̄
∂

∂t

%
cn(t)e

− iEnt
h̄

&
= 〈n|H|α; t〉 (3.232)

ih̄
%
ċn(t)−

i

h̄
Encn(t)

&
e−

iEnt
h̄ =

$

m

〈n|H|m〉cm(t)e−
iEmt

h̄ (3.233)

(3.234)

Simplifying, and using the variable ωmn = Em−En
h̄ we get n coupled differ-

ential equations of the form

ih̄ċn(t) =
$

m

〈n|V (t)|m〉cm(t)e−iωmnt (3.235)

These are rarely exactly solvable unless there are only a few kets, so the
primary approach is still through perturbation. Integrating this equation
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gives us an expression for one of the coefficients in terms of the coefficient
itself

cn(t) = cn(0)−
i

h̄

$

m

# t

0
dt′〈n|V (t′)|m〉cm(t′)e−iωmnt′ (3.236)

Freeman Dyson came up with a clever way to recursively solve for cn(t)
by plugging the expression into itself. More clearly, on the right side of
the equation, we have the variable cm(t′), but looking at the left side, we
actually have an explicit expression for it, the equation itself. So plugging in
for cm(t′) over and over we can get closer and closer to the exact expression
for cn(t) with more and more integrals. So effectively we have

cn(t) = c(0)n (t) + c(1)n (t) + c(2)n (t) + ... (3.237)

To find each coefficient, we follow the formula

c(i+1)
n = − i

h̄

$

m

# t

0
dt′〈n|V (t′)|m〉c(i)m (t′)e−iωmnt′ (3.238)

The first two written out explicitly are

c(0)n (t) = cn(0) (3.239)

c(1)n (t) = − i

h̄

$

m

# t

0
dt′〈n|V (t′)|m〉cm(0)e−iωmnt′ (3.240)

3.9.4 Fermi’s Golden Rule

We consider all of the states n that are within some small range of an energy
we care about Ei. By considering only the first term in time dependent
perturbation theory, we can do some math to find that transition rate w,
which is the rate of change of the probability you will be in a state is given
by

wi−>[n] =
2π

h̄
|Vin|2ρn (3.241)

3.9.5 Adiabatic Theorem

The Adiabatic theorem tells us that if you start with some Hamiltonian H,
and you have a particle in the nth eigenstate of it, and you slowly change
the Hamiltonian to H ′, it will again be in the nth eigenstate of H ′, as long
as there is no degeneracy and the change to the Hamiltonian is small.
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3.10 Scattering

7 The solution to the Schrodinger equation for a particle in free space is
simply a plane wave, with

ψk(r) =
1

(2π)3/2
eik·r Ek =

h̄2k2

2m
(3.242)

In general, we know that if we have an eigenstate of energy, we must
have

E|ψ〉 = H|ψ〉 =
! p2

2m
+ V

"
|ψ〉 (3.243)

Now looking at the position space wave form

E〈x|ψ〉 = 〈x|
! p2

2m
+ V

"
|ψ〉 (3.244)

Eψ(x) =
−h̄2

2m
∇2ψ(x) + 〈x|V |ψ〉 (3.245)

The most general form of the scattering equation including a non-local po-
tential is

Eψ(x) =
−h̄2

2m
∇2ψ(x) +

#
dx′3〈x|V |x′〉〈x′|ψ〉 (3.246)

Where the potential has off diagonal matrix elements, so we have to sum
over everything. If the potential is local then we have that

! h̄2

2m
∇2 + E

"
ψ′(r) = V (r)ψ′(r) (3.247)

From here, we can notice that the left operator acting on ψ′(r) is a linear
differential operator, so it’s Kosher to look for solutions to it using Green’s
Functions (Section 5.2.10). The equation we want to solve is

! h̄2

2m
∇2 + E

"
G(r, r′) = δ(r− r′) (3.248)

We can thus write the Schrodinger equation in integral form, with an inte-
gration constant accounting for the fact that as V (r) goes to zero, we must
recover our initial unscattered plane wave solution

ψ′(r) = ψ(r) +

#
dr′3 G(r, r′)V (r′)ψ′(r′) (3.249)

7Much of this section is thanks to Stephan Blugel and his nice writeup http://juser.

fz-juelich.de/record/20885/files/A2_Bluegel.pdf

http://juser.fz-juelich.de/record/20885/files/A2_Bluegel.pdf
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This equation is called the Lippmann-Schwinger Equation. To solve for
the Green’s function, we can use the method of eigenfunction expansion8,
using the fact that

#
dk3ψ∗

k(r)ψk(r
′) = δ(r− r′) (3.250)

Since we have that
! h̄2

2m
∇2 + E

"
ψk(r) =

h̄2

2m
(k′2 − k2)ψk(r) (3.251)

Where E = h̄2k′2

2m . We thus have that the eigenvalue of the linear differential
operator9, needed for this expansion is given by

λk =
h̄2

2m
(k′2 − k2) (3.252)

Thus our Green’s function can be written as

G(r, r′) =
2m

(2π)3h̄2

#
dk3

eik·(r−r′)

k′2 − k2
(3.253)

Now evaluating the easy part, written in spherical coordinates, we have

G(r, r′) =
2m

(2π)2h̄2

# 1

−1
d(cos θ)

# ∞

0
dkk2

eik|r−r′| cos θ

k′2 − k2
(3.254)

The rest can be evaluated using complex integration, giving us the result as

G(r, r′) = −2m

h̄2
1

4π

eik|r−r′|

|r− r′| (3.255)

It is worth noting this is also the Green’s function for the Helmholtz equa-
tion. Now plugging this back into equation 3.249, we get

ψ′(r) = ψ(r)− m

2πh̄2

#
dr′3

eik|r−r′|

|r− r′| V (r′)ψ′(r′) (3.256)

This is the scattering equation and is completely equivalent to the Schrodinger
equation in integral form for a local potential10, everything else approximates
usually that observation point is far away. As a reminder r is the position
of the wave you are considering, and r′ will be everywhere that you have a
non-zero potential, otherwise the integrand will be zero.

8http://www.nhn.ou.edu/~milton/p5013/chap12.pdf pg. 15
9Zangwill pg. 255

10Griffiths pg. 366

http://www.nhn.ou.edu/~milton/p5013/chap12.pdf
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3.10.1 Far-Field

If we are observing at a point very far away from where the potential is, we
have that |r| ≫ |r′|, which lets us approximate, through Taylor expansion

|r− r′| ≈ r − r̂ · r′ 1

|r− r′| ≈
1

r
+O

! 1

r2

"
(3.257)

So after defining k′ = kr̂, which is the component of the wave vector still
travelling towards the observer, equation 3.256 becomes

ψ′(r) = ψ(r)− m

2πh̄2
eikr

r

#
dr′3 e−ik′·r′V (r′)ψ′(r′) (3.258)

It is conventional to write

f(k′,k) ≡ − m

2πh̄2

#
dr′3 e−ik′·r′V (r′)ψ′(r′) (3.259)

Where the k denotes that the equation is implicitly dependent on our initial
wave function ψ(r)k. This lets the equation be read as

ψ′(r) = ψ(r) +
eikr

r
f(r̂) (3.260)

It also happens that the differential scattering cross-section is given by

dσ

dΩ
= |f(k′,k)|2 (3.261)

3.10.2 Born Approximation

Since equation 3.256 contains itself, we can use a method similar to what
we did in perturbation theory to expand it in powers of the potential, with

ψ′(r) = ψ′(0)(r) + ψ′(1)(r) + ψ′(2)(r) + ... (3.262)

The recursive equation is given by

ψ′(n+1)(r) = eik·r − m

2πh̄2
eikr

r

#
dr′3 e−ik′·r′V (r′)ψ′(n)(r′) (3.263)

Physically, each term in the expansion represents the order of the scattering,
i.e the first term is when the wave function has scattered once, the second
order is when it has scattered twice, etc. It is often easier to just use
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numerical methods to do anything higher than first order, but the first
order term is important, whose scattering amplitude is given by

f (1)(k′,k) = − m

2πh̄2

#
dr′3ei(k−k′)·r′V (r′) (3.264)

There are a few cases where this equation can be reduced even further

1. Spherically Symmetric Potential
Centering the coordinate system at the center of the potential and
choosing the direction of the vector q = k− k′ to be along the ẑ axis,
so that

q · r′ = qr cos θ (3.265)

The first order Born approximation reads as

f (1)(k′,k) = − m

2πh̄2

# 2π

0
dφ

# 1

−1
d(cos θ)

# ∞

0
dr′r′2eiqr cos θV (r′)

(3.266)

= −m

h̄2
1

iq

# ∞

0
dr′

r′2

r′
V (r′)

!
eiqr

′ − e−iqr′
"

(3.267)

= − 2m

qh̄2

# ∞

0
dr′r′V (r′) sin(qr′) (3.268)

2. Low Energy
When we have that the wave length of k is very long compared to
the region the potential is in, the exponential factor in equation 3.266
will change very slightly as we integrate over the entire potential, so
it is fair to pull it out of the integral entirely, since it is effectively a
constant, and set it to one. This gives us

f (1)(k′,k) = − m

2πh̄2

#
dr′3V (r′) (3.269)
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Chapter 4

Electromagnetism

The scope of Electricity and Magnetism is almost undoubtably the most
broadly reaching field within Physics, describing everything from why the
sky is blue, to how we can send radio signals across the world, to why you
can see yourself in a mirror. Somehow this huge array of phenomena stem
entirely from just four basic laws, called Maxwell’s equations.

4.1 Maxwell’s Equations

4.1.1 Gauss’s Law

The electric field is an abstraction that tells us how a charge would move if
it is in it’s presence, with

F = qE (4.1)

Gauss’ law tells us that the divergence of the electric field at any point, is
equal to the charge density at that point, divided by some constant

∇ ·E =
ρ

ε0
(4.2)

This equation is easier to interpret in integral form. With
#

dV ∇ ·E =

#
dV

ρ

ε0
(4.3)

#
dA ·E =

Qenc

ε0
(4.4)

This equation says that if you add up the electric field going straight
through every bit of area on some given surface, you will always find exactly

83
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the amount of charge that is in the volume enclosed by that surface. This
quantity is also sometimes called the electric flux

#
dA ·E = ΦE (4.5)

4.1.2 No Monopoles

This law doesn’t really have a name, but is just simply a fact that there
happen to experimentally be no magnetic charges

∇ ·B = 0 (4.6)

Or in integral form
#

dA ·B = 0 (4.7)

4.1.3 Ampere’s Law

Typically thought of as current generates a magnetic field. In differential
form

∇×B = µ0J+ µ0ε0
dE

dt
(4.8)

Where J is the current density, or current per unit area, and points in the
direction that the positive current goes. The extra factor with E is called the
displacement current, and accounts for times when we have current entering
a surface, but the current has no place to go (such as current going onto a
capacitor), but we still need to satisfy Gauss’ law. In integral form we have

#
B · dl = µ0I + µ0ε0

dΦE

dt
(4.9)

4.1.4 Faraday’s Law

Faraday’s law says that if we have a changing magnetic field, we will get an
electric field that is created by it. In differential form

∇×E = −dB

dt
(4.10)

In integral form, we can see how the voltage is generated, with
#

E · dl = V = −dΦB

dt
(4.11)

Where ΦB is the magnetic flux, and has the same form as the electric flux.
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4.2 Electrostatics

Using the definition of the electric field in electrostatics

E(r) = −∇ϕ(r) (4.12)

To arrive at Poisson’s equation

∇2ϕ(r) = −ρ(r)/ε0 (4.13)

We can use Green’s functions (Section 5.2.10) to solve the the differential
equation, looking first for

∇2G(r, r′) = δ(r− r′) (4.14)

But we found something that solves that equation before with Equation 5.93
(after adjusting constants) so we can write the free space Green’s function
as

G(r, r′) =
−1

4π|r− r′| (4.15)

In the formulation of Green’s functions, we have

ϕ(r) =
−1

ε0

#
dr′3G(r, r′)ρ(r′) =

1

4πε0

#
d3r′

ρ(r′)

|r− r′| (4.16)

This is the quintessential equation used in Electrostatics, and from here
we do things like expand it with Legendre Polynomials and Spherical Har-
monics, etc. to get rid of the bottom term which makes things difficult to
integrate.

4.2.1 Green’s Reciprocity Theorem

Normal electrostatic energy is defined by adding up all of the charges of
one subset (1) multiplied by their potential at their given location created
by another subset of charges (2). In integral form, the potential energy V
needed to put the set of charges in the given potential is

V =

#
dr3ϕ1(r)ρ2(r) (4.17)

A nice consequence of the Green’s function solution to the potential is that
we can rewrite this equation with

#
dr3ϕ1(r)ρ2(r) =

#
dr3

#
dr′3

ρ2(r
′)ρ1(r)

|r− r′| =

#
dr3ϕ2(r)ρ1(r) (4.18)
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Which is nice if the charge distribution from one set is easy to find, but not
so easy the other way, we can swap which one we want to integrate over
and the energy will be the same. This lets us find an unknown potential
or charge distribution using tricks if we have somewhere that one of the
potentials is zero, making the integrand zero. The total electrostatic energy
required to assemble the entire thing from nothing is given by

UT =
1

2

#
dr3ϕ(r)ρ(r) =

1

2
ε0

#
dr3|E(r)|2 (4.19)

Using now the entire distribution and ensuring we don’t double count with
the extra factor of 1/2. Integration by parts gives us the expression in terms
of E.

4.2.2 Multipole Expansion

If we have that the point of observation r is much farther than the location
of the source r′, we can Taylor expand the denominator in equation 4.16
and get

1

|r− r′| =
1

r
− r′ ·∇1

r
+

(r′ ·∇)2

2!

1

r
− ... (4.20)

Rewriting the potential, we get something kind of nasty

ϕ(r) =
1

4πε0

#
d3r′

ρ(r′)

|r− r′| =
1

4πε0

!Q
r
+

p · r
r3

+Qij
3rirj − r2δij

r5
+ ...

"

(4.21)

Where the first term in the last expansion is the monopole moment, followed
by the dipole moment, defined as

p ≡
#

dr3ρ(r)r =
$

qiri (4.22)

Which is just the vector sum of all of the charges multiplied by their coor-
dinate, analogous to a calculation for center of mass. We can find the form
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of the electric field of a dipole using tensor notation with

Edip = −∇Vdip = − 1

4πε0
∂j

piri
r3

(4.23)

= − 1

4πε0

% pi
r3

∂jri + piri∂j
1

r3

&
(4.24)

= − 1

4πε0

% pi
r3

δij −
3pirirj

r5

&
(4.25)

=
1

4πε0

3(p · r̂)r̂− p

r3
(4.26)

We can also find the expression for energy E and torque τ with

Edip = −p ·E (4.27)

τdip = p×E (4.28)

One can remember the minus sign because a dipole always points in the
direction of it’s positive charge, so one pointing parallel with an electric
field will have lower energy. The torque rule can be recovered drawing out
the dipole and imagining how it will spin in combiniation with the right
hand rule.

The quadrupole moment Qij is a tensor defined as

Qij =
1

2

#
dr3ρ(r)rirj =

1

2

$
qrirj (4.29)

Where ri = x, y, z, this is not summation notation! One quadrant would
look like

Qxy =
1

2

#
dr3ρ(r)xy (4.30)

4.2.3 Uniqueness

In order for use to have unique solutions to each electrostatics question,
which lets us get the solution be literally any means, it happens that1,
using something called Dirichlet boundary conditions, we need the potential
specified at some boundary, such that any two solutions evaluated at that
boundary will be equal or ϕ1(rs) − ϕ2(rs) = 0 where rs is the location of
the boundary. There are other choices such Neumann Boundary conditions,
but we probably won’t need to know them.

1Zangwill pg. 199
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4.2.4 Symmetries

Another key to solving these equations is looking for places where you can
leverage symmetries to make evaluation of many of these things near trivial.
For instances if we are looking at the potential of a conducting sphere relative
to infinity, we can just use Gauss’ law to solve for the electric field

#
dS ·E =

Q

ε0
= 4πr2E (4.31)

Then integrate from infinity to field the potential

V = −
# r

∞
dl ·E = − Q

4πε0

# r

∞

dr′

r′2
=

Q

4πε0r
(4.32)

4.2.5 Image Charges

To solve these, need to have some kind of boundary, you can place a fake
”image charge” within the boundary, and, through uniqueness, solve for the
potential outside by just vector summing the fictitious charge, and the real
ones. It is typically done with grounded surfaces, but works equally well if
the surface is just maintained at a constant potential, because we can just
add more image charges in other locations to make it so (for instance the
center of a sphere). For a sphere the image charge to make an equipotential
surface is given as

q′ = −R

d
q (4.33)

d′ =
R2

d
(4.34)

Where q is the magnitude of the charge outside the sphere, a distance d
from it’s center, requiring that a charge of opposite sign q′ be put a distance
along the same axis given by d′ to create the surface. You actually hardly
have to remember these, since as long as you know that the charge should
be negative and less in magnitude when it is inside the sphere, you can just
make whatever ratio you like with the radius to make it so.

For a dielectric surface, we can also use image charges. For an infinite
sheet, we actually need two image charges to keep the parallel component
of the electric field equal to zero on the interface.
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4.3 Laplace’s Equation

Laplace’s equation, obtained by plugging in the expression for electric po-
tential into Gauss’ law, is written as

∇2ϕ = 0 (4.35)

And is used to solve the electric potential within a region with no charge. All
the problems here involve solutions to the aptly named Laplacian operator
∇2 in various geometries using separation of variables.2 is a great resource
here. To solve these questions follow this algorithm

1. Recognize geometry of the problem (Cartesian, Spherical with Az-
imuthal Symmetry, etc.)

2. Shrink Laplace’s equation by getting rid of any terms that the potential
doesn’t depend on out of the Laplacian, e.g. if it doesn’t depend on

z, d
2Z(z)
dz2

= 0.

3. Use boundary conditions to collapse form further and get some con-
stants

4. If necessary, use orthogonality of whatever functions you have to select
out terms to find equations for coefficients for the potential

5. Do the same thing for continuity of the electric field

6. Plug in constants and you’re done

4.3.1 Cartesian

Here we guess that the potential has the form of a product of X(x)Y (y)Z(z)
which lets us manipulate Laplace’s equation into the form

X ′′

X
+

Y ′′

Y
+

Z ′′

Z
= 0 (4.36)

These all have to be constants, since they are all independent variables,
which in total must sum to zero, so

α2 + β2 + γ2 = 0 (4.37)

2Zangwill pg. 197
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Which gives us solutions

X(x) =

6
A0 +B0x α = 0

Aαe
αx +Bαe

−αx α ∕= 0
(4.38)

Y (y) =

6
C0 +D0y β = 0

Cβe
βy +Bβe

−βy β ∕= 0
(4.39)

Z(z) =

6
E0 + F0z γ = 0

Eγe
γz + Fγe

−γz γ ∕= 0
(4.40)

The solution is a general linear combination of all solutions that satisfy
α2 + β2 + γ2 = 0, so the potential is

ϕ(x, y, z) =
$

α

$

β

$

γ

Xα(x)Yβ(y)Zγ(z)δ(α
2 + β2 + γ2) (4.41)

4.3.2 Spherical

For an azimuthally symmetric system, the form is

ϕ(r, θ) =

∞$

l=0

[Alr
l +Blr

−(l+1)]Pl(cos θ) (4.42)

Can remove either the positive or negative exponents depending on if your
solution must include 0 or infinity. Can also figure it out from Taylor ex-
pansion that give you the Legendre Polynomials in section 5.2.2.

For non-azimuthally symmetric systems, we have to expand the Leg-
endre Polynomials in terms of Spherical Harmonics, so

ϕ(r, θ) =

∞$

l=0

l$

m=−l

[Almrl +Blmr−(l+1)]Y l
m(θ,φ) (4.43)

4.3.3 Cylindrical

Here we guess the form that the potential looks like a product ofR(ρ)G(φ)Z(z),
which comes out (Section 5.4.2) with solutions to Laplace’s equation in
Cylindrical that look like

Gα(φ) =

6
x0 + y0φ α = 0

xαe
iαφ + yαe

−iαφ α ∕= 0
(4.44)
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Where α comes from the equation

d2G

dφ2
= −α2G (4.45)

So it makes sense we get sines and cosines, or just linear terms if α = 0.
Since we need that ϕ(φ) = ϕ(φ + 2π), So as long as we are using the full
angular range we need

α = 0,±1,±2,±3, ... (4.46)

The z portion is similar to the angular portion, but it happens that the
constant can be either sign, so

Zk(z) =

6
s0 + t0z k = 0

ske
kz + tke

−kz k ∕= 0
(4.47)

The radial portion is quite nasty, we get the constants from the other two
equations, with things like condary conditions, then can use them to help
decide what radial function we need below.

Rk
α(r) =

7
88889

8888:

A0 +B0 ln ρ k = 0,α = 0

Aαρ
α +Bαρ

−α k = 0,α ∕= 0

Ak
αJα(kρ) +Bk

αNα(kρ) k2 > 0

Ak
αIα(−ikρ) +Bk

αKα(−ikρ) k2 < 0

(4.48)

Where J(x) and N(x) are Bessel Functions (Section 5.2.5) and I(x) and
K(x) are modified Bessel functions. The general solution is given by a
linear super position of all the elementary solutions with

ϕ(ρ,φ, z) =
$

α

$

k

Rk
α(ρ)Gα(φ)Zk(z) (4.49)

4.4 Magnetostatics

4.4.1 Magnetic Potential

We first need a vector identity that is true for any vector, given by

C(r) = ∇× 1

4π

#
d3r′

∇′ ×C(r′)

|r− r′| −∇ 1

4π

#
d3r′

∇′ ·C(r′)

|r− r′| (4.50)
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Since ∇ ·B = 0, we have that

B(r) = ∇× 1

4π

#
d3r′

∇′ ×B(r′)

|r− r′| (4.51)

In Magnetostatics

∇×B = µ0j (4.52)

We identify the term before the curl as the magnetic potential with

A(r) =
µ0

4π

#
d3r′

j(r′)

|r− r′| (4.53)

We can also derive the Biot-Savart law for the magnetic field using index
notation with

B(r) = ∇× µ0

4π

#
d3r′

j(r′)

|r− r′| (4.54)

Bi =
µ0

4π
εijk∂j

#
d3r′

j′k
|r− r′| (4.55)

=
µ0

4π

#
d3r′εijkjk∂j

1

|r− r′| (4.56)

= −µ0

4π

#
d3r′εijkjk

rj
|r− r′|2 (4.57)

(4.58)

Fix this. Thus we see that

B(r) =
µ0

4π

#
d3r′

j(r′)× (r− r′)

|r− r′|3 (4.59)

4.4.2 Ohm’s Law

When I first studied E&M, it was always weird to me that people would
say ”There is no electric field in a conductor” while simultaneously saying
”The current in a conductor is proportional to the voltage difference between
two regions (and therefore the electric field)”. The real thing goes like this;
we take the perspective of a single electron in a conductor, and look at a
simplified version of all the forces that act on it

mv̇ = −eE− mv

τ
(4.60)



4.5. DIPOLES 93

The electric field term is straightforward, and the other one is a drag term
meant to account for collisions, since the electron will be slowed down when it
runs into things. Since the electron is feeling a force propotional to however
fast it is going, it will eventually reach an equilibrium speed, which we can
find by setting the acceleration to zero.

vd = −eτ

m
E (4.61)

This is called the drift speed and is actually quite small in most metals
(∼ 10−3 m/s). We define the current from the continuity equation for con-
servation of charge, since

∂ρ

∂t
+∇ · (ρv) = 0 (4.62)

The current density we call the right part, defined as

j ≡ ρv (4.63)

If we have just one type of charge, the current density is identical to mul-
tiplying just one charge by its velocity then by however many there are in
that region n, or if we have a whole bunch of kinds of charges N

j =

N$

i=1

qinivi (4.64)

If we have only electrons, we have just one term, and since each electron will
feel the same electric field, will have the same drift velocity, so we can say

j =
ne2τ

m
E = σE (4.65)

Where σ is called the conductivity. This is Ohm’s law V = IR since we see
the current is linear in the electric field. The surface charge density is given
by

K = σv (4.66)

But this time σ is the surface charge density, which can be needlessly con-
fusing if you are unfamiliar with how to use these equations.

4.5 Dipoles

4.5.1 Electric Dipoles

V (r) =
1

4πε0

p · r
r3

(4.67)
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4.5.2 Magnetic Dipoles

A(r, t) =
µ0

4π

m× r

r3
(4.68)

Using index notation we can find the field with

B(r, t) =
µ0

4π

!3r̂(m · r̂)−m

r3

"
(4.69)

The magnetic moment is defined as

m =
1

2

#
dr3[r× jm

&
+

1

2

#
dS[r×Km] (4.70)

4.6 Fields in Matter

4.6.1 Dielectrics

A perfect conductor is capable of reorienting any and all of its electrons such
that it always exactly cancels out any static electric field that is applied to
it. In reality of course, most objects can’t reorient themselves this well, but
still can to a degree. These materials are called dielectrics and physically
appear from the stretching of electrons from their nuclei inside a material,
which makes it so the field inside the material is no longer just the externally
applied field, but also a field created by the stretched molecules created by
the external field itself. So we break up the field into components

D = ε0E+P (4.71)

Where D is called the auxillary field, the field leftover inside the material
after the molecules reorient themselves according to the applied field E which
gives the object it’s polarization P. In the lab we can control how much free
charge ρf we can put on something, but not necessarily how much bound
charge ρB shows up, so most people use D in real life circumstances.

Something something free vs bound charge.
As a memorization rule, it seems best to obtain the expressions for bound

charge from combining expressions for D and E. We first say

∇ ·D = ρf (r) (4.72)

And taking the divergence

ε0∇ ·E−∇ ·D = −∇ ·P (4.73)

ρ(r)− ρf (r) = −∇ ·P (4.74)
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So we have to have that

∇ ·P = −ρB(r) (4.75)

Which just says if we add up the free and bound charge, we get the total
charge density. We also want to have boundary conditions for the auxilary
field, with

n̂ · [Dout −Din] = σf (4.76)

n̂ · [Eout −Ein] = σ/ε0 (4.77)

If we are looking at the interface of vacuum and a medium with polarization
P, we have

n̂ · [ε0Eout + 0− ε0Ein −P] = σf (4.78)

σ −P · n̂ = σf (4.79)

Thus

P · n̂ = σB (4.80)

Typically we consider only linear (first order), isotropic (same from any
direction), homogeneous (the same all over) materials, which means that
the polarization is linearly proportional to the applied field

P = ε0χE (4.81)

There are alot of constants here, with

ε = ε0(1 + χ) κ =
ε

ε0
(4.82)

These let you express a whole bunch of things in a huge number of ways,
for instance

ρb = − χ

1 + χ
ρf (4.83)

Another useful thing to know is the relationship between an electric dipole
moment p and the field

p = αE (4.84)

Where α is the polarizability. With this knowledge, we can express the
polarization in terms of the electric dipoles with

P =
dp

dV
(4.85)
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4.6.2 Magnetization

Magnetization happens when we get a rearrangement of internal currents in
a material when an external magnetic field is applied to it. Electron spin is
responsible for most of magnetism in paramagnets and ferromagnets.

Similar to electrostatics in materials, we want a magnetic field that comes
just from the the free current jf (with ∂E/∂t = 0) . We also call this field
the auxiliary field H with

∇×H = jf (4.86)

When these things were being define, they thought that H was the real
full field, and B was the field that just came from the free currents, so the
definition is similar to that for dielectrics, but with the two swapped and
the constant only on B

1

µ0
B = H+M (4.87)

Doing the same tricks to find out things about the Magnetization, M we
have

1

µ0
∇×B = ∇×H+∇×M (4.88)

j = jf +∇×M (4.89)

So the magnetization current density is

jm = ∇×M (4.90)

There is also another interesting property that the auxiliary field can have,
a divergence, since

1

µ0
∇ ·B = ∇ ·H+∇ ·M (4.91)

→ ∇ ·H = −∇ ·M (4.92)

We can also use the boundary conditions to find out things about free and
bound surface currents

n̂× [Hout −Hin] = Kf (4.93)

n̂× [Bout −Bin] = µ0K (4.94)
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So looking for the equivalent bound current, with no magnetization on the
outside

n̂× [Bout −Bin +M] = Kf (4.95)

K+ n̂×M = Kf (4.96)

Thus

M× n̂ = Km (4.97)

After swapping the order of the cross product.

4.6.3 Waves

Maxwell’s equation’s in matter can be rewritten, quite easily by simply
changing all instances of ε0 → ε and µ0 → µ, so

∇ ·E =
ρ

ε
∇ ·B = 0 (4.98)

∇×E = −∂B

∂t
∇×B = µj+ µε

∂E

∂t
(4.99)

4.6.4 Polarization

Scarab beetles reflect almost only circularly polarized light.

4.7 Boundary Conditions

n̂ · [Dout −Din] = σfree n̂ · [Bout −Bin] = 0 (4.100)

n̂× [Eout −Ein] = 0 n̂× [Hout −Hin] = Kfree (4.101)

Where we assume D = εE and H = B/µ. These can easily be rederived
thinking about an infinite sheet with charge density σ forD and just drawing
vectors and using the right hand rule to put things in the right place for H

4.8 Waves

4.8.1 Waves in Vacuum

Maxwell’s equations in vacuum ρ = j = 0 are

∇ ·E = 0 ∇ ·B = 0 (4.102)

∇×E = −∂B

∂t
∇×B = ε0µ0

∂E

∂t
(4.103)
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Just to see what happens, let’s take the curl of Faraday’s law

∇× (∇×E) = −∇× ∂B

∂t
(4.104)

∇(∇ ·E)−∇2E = − ∂

∂t

!
∇×B

"
(4.105)

∇2E = ε0µ0
∂2E

∂t2
(4.106)

This is the wave equation in three dimensions. We can match the term in
front of the time derivative with the normal form of the wave equation to
recover the speed at which the electric field propagates as

c =
1

√
ε0µ0

= 3× 108 m/s (4.107)

Which is in fact the speed of light in vacuum. We can also rewrite the
magnetic field doing the same thing with

∇2B =
1

c2
∂2B

∂t2
(4.108)

So the changing in space and time of the electric field is able to generate a
magnetic field, which then twists and turns back into an electric field, over
and over and over again as it propagates through vacuum. The well known
solutions to this equation let write a general solution to

∇2w =
1

c2
∂2w

∂t2
(4.109)

As a function of new arguments

w(z, t) = g(z − ct) + f(z + ct) (4.110)

As long as the velocity c2 is independent of frequency. We can then adjust
constants and write the general electric field wave as

E(r, t) = E0f(k · r− ωt) (4.111)

(4.112)

This is an electric field that propagates in the positive k̂ direction, which
can be seen by looking at its phase. We take B to be an identical function
of r and t3, with

B(r, t) = B0f(k · r− ωt) (4.113)

3Why?
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With c|k| = ω. Using tensor notation and Faraday’s law, we see

εijk∂j

%
Ekf(klrl − ωt)

&
= −∂tBif(klrl − ωt) (4.114)

εijkEkf
′(klrl − ωt)δjlkl = ωBif

′(klrl − ωt) (4.115)

k×E0f
′(klrl − ωt) = ωB0f

′(klrl − ωt) (4.116)

k×E0 = ωB0 (4.117)

This tells us that

|E| = c|B| (4.118)

So we can write general plane wave solutions as

Ẽ(r, t) = E0 exp
%
i(k · r− ωt)

&
(4.119)

B̃(r, t) =
1

ω
k×E0 exp

%
i(k · r− ωt)

&
(4.120)

We are able to write in general the fields in terms of a single exponential
function, with the phase hidden in the constant. These are much nicer to
use than trigonometric functions, although the real part of these fields are
the things that create the real field, which can be found just taking the real
part of these equations with

E(r, t) = Re
!
Ẽ
"

(4.121)

B(r, t) = Re
!
B̃
"

(4.122)

4.8.2 Waves in Matter

For these questions, we can find the ω dependent permitivity by

1. Write out the forces on each of the individual electrons

2. Find the current density using the equation

j =
$

α

qαnαẋ = σE (4.123)

3. Find an expression for the effective permitivity in maxwells equations
in matter

4. Solve for the effective permitivity
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4.8.3 Waves in Conductors

The whole idea here is that in Maxwell’s equations, because of Ohm’s law
j = σE, which make the electrons resistance to movement, we get funny
residual effects that wouldn’t happen if they could move instantly. Using
Maxwell’s equations in matter, we first assume that we have waited long
enough for the charge density ρ to go away, but a time that we still have a
current. I’m still not super clear on this. Anyways, we have

∇ ·E = 0 ∇ ·B = 0 (4.124)

∇×E = −∂B

∂t
∇×B = µj+ µε

∂E

∂t
(4.125)

Let’s take the curl of Ampere’s law and replace j = σE

∇× (∇×E) = −∇× ∂B

∂t
(4.126)

∇(∇ ·E)−∇2E = − ∂

∂t
∇×B (4.127)

−∇2E = − ∂

∂t

%
µσE+ µε

∂E

∂t

&
(4.128)

∇2E = µσ
∂E

∂t
+ µε

∂2E

∂t2
(4.129)

This equation can again be solved with an plane wave, with

E(r, t) = E0 exp
%
i(k̃ · r− ωt)

&
(4.130)

B(r, t) = B0 exp
%
i(k̃ · r− ωt)

&
(4.131)

Plugging it into the new wave equation, we find that

k̃
2
= iµσω + µεω2 (4.132)

Obviously k̃ must have an imaginary part to it, so we can now write it as a
complex number

k̃ = (k + iκ)k̂ = k+ iκ (4.133)

Thus

2ikκ+ (k2 − κ2) = iµσω + µεω2 (4.134)
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We can now match the real and imaginary parts, leading to a quadratic
equation, which can be solved. The important part is that the fields now go
like

E(r, t) = E0e
−κ·rκ exp

%
ik · r− ωt)

&
(4.135)

B(r, t) = B0e
−κ·r exp

%
i(k · r− ωt)

&
(4.136)

So we see the fields die off exponential as we go into the conductor. We
define the skin depth as

d =
1

κ
(4.137)

4.8.4 Waves in Plasma

”The frequency dispersion of the index of refraction ... occurs because mat-
ter cannot respond instantaneously to an external perturbation”.4 Now we
again look at the motion of a charge particle in a magnetic and electric
field. We first look at the forces on a charge, pretending it has a binding
force −mω2

0x

mẍ = qE−mγẋ−mω2
0x (4.138)

We assume that it matches the field

x(t) = x0e
iωt E(t) = E0e

iωt (4.139)

This gives us

x =
q/m

iωγ − ω2 − ω2
0

E (4.140)

We can plug this into the formula for current density, if we have just one
species and get

j =
iωq2n/m

iωγ + ω2 − ω2
0

E (4.141)

We can find the effective permittivity from maxwells equations in matter
with Equation 4.129.

ε̃(ω)

ε0
= 1 +

iσ

ε0ω
(4.142)

4Zangwill pg. 625
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We use Ohm’s law to find the conductivity and find

n =

;
ε̃(ω)

ε0
=

;

1−
ω2
p

iωγ + ω2 − ω2
0

(4.143)

Where the plasma frequency is given by

ω2
p =

q2n

ε0m
(4.144)

4.8.5 Waveguides

Take Maxwell’s equation’s in free space, and assume of the electric field as

E = E(x, y)ei(kz−ωt) (4.145)

Play around with their components to come up with a differential equation
for x and y in terms of z.

% ∂2

∂x2
+

∂2

∂y2
+ (ω/c)2 − k2

&
Ez = 0 (4.146)

% ∂2

∂x2
+

∂2

∂y2
+ (ω/c)2 − k2

&
Bz = 0 (4.147)

There are two typical cases considered Transverse electric which happens
when the electric field is never in the z direction, or Ez = 0. Transverse
magnetic is when the magnetic field is never in the z direction so Bz = 0.
There is also a case where both are transverse aptly named TEM waves
where Bz = Ez = 0. After solving for Ez or Bz, we will get coefficients in
place of the derivative operators. The sum of these must add to zero to keep
the equation true. Typically it looks something like

!nπ
dx

"2
+

!mπ

dy

"2
+ (ω/c)2 − k2 = 0 (4.148)

Our job here is to find the smallest possible ω, which is done just rear-
ranging

ω = c

;

k2 −
!nπ
dx

"2
−

!mπ

dy

"2
(4.149)

Now in most cases n,m = 0, 1, 2, 3, ... etc. So we just pick the one that makes
it so, giving us our ”cutoff frequency” ωc which is the smallest frequency that
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can possibly travel down the waveguide. To solve for the other components
of the electric field as it is traveling, just plug Ez into Maxwell’s equations
to get differential equations for Ex and Ey. For instance

∇ ·E = 0 = ∂xEx + ∂yEy + ∂zEz (4.150)

Where we can usually assume one of these is zero to start with, since we
usually just look at TE or TM waves.

4.9 Potentials and Energy Transport

4.9.1 Gauges

Because ∇ · B = 0 always (there are no magnetic monopoles), and the
divergence of the curl of any vector is always zero, we can say

∇ ·B = 0 = ∇ ·
!
∇×A

"
(4.151)

So we define the magnetic potential A as

B = ∇×A (4.152)

We want to also maintain the same definition we used for the scalar potential
before that arose because the curl of a gradient is zero with

∇×E = 0 = ∇×
!
−∇ϕ

"
(4.153)

In electrodynamics of course, Faraday’s law reads

∇×E = −∂B

∂t
= − ∂

∂t

!
∇×A

"
(4.154)

Which inspires us to write

E = −∇ϕ− ∂A

∂t
(4.155)

The only restriction on these potentials is that when you do the opera-
tions described, you must get back the same fields. Playing around and you
can see that this lets us change

A′ = A+∇ψ (4.156)

ϕ′ = ϕ− ∂ψ

∂t
(4.157)
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Where ψ(r, t) is any scalar function. The Coulomb Gauge is one where
∇ ·A = 0, so we get equations familiar to us in electrostatics, with

∇ ·E = −∇2ϕ = ρ/ε0 (4.158)

The Lorenz Gauge is one where

∇ ·A = − 1

c2
∂ϕ

∂t
(4.159)

This equation is particularly useful in electrodynamics. Partially because
then the potentials satisfy an inhomogeneous wave equation with

1

c2
∂2ϕ

∂t2
−∇2ϕ =

ρ

ε0
(4.160)

1

c2
∂2A

∂t2
−∇2A = µ0j (4.161)

In relativistic electrodynamics, these wave equations are consolidated into a
super small formula after we define

Aµ ≡ (ϕ/c,Ax, Ay, Az) (4.162)

jµ ≡ (ρc, jx, jy, jz) (4.163)

So

∂µ∂
µAν = µ0j

ν (4.164)

One can use Green’s functions to solve equations 4.160 and 4.161. Giving
us the solutions as

ϕ(r, t) =
1

4πε0

#
dr′3

ρ(r′, t− |r− r′|/c)
|r− r′| (4.165)

A(r, t) =
µ0

4π

#
dr′3

j(r′, t− |r− r′|/c)
|r− r′| (4.166)

The intuition behind these equations is that at the point r, it will take time
for the information from the charge and current density to propagate to
wherever the observer is. So what we have to do is add up all the charge and
current density that existed at an earlier time, where that time is determined
by how long it takes light to reach the location of the observer, from the
location of the source.
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4.9.2 Poynting’s Theorem

The rate of change of mechanical energy of a system due to work done by
charges is given by

dWmech

dt
=

#
dr3ρ(E+ v×B) · v =

#
dr3j ·E (4.167)

Since the magnetic force does no work. Solving for the current density in
Ampere’s law we have that

j =
∇×B

µ0
− ε0

∂E

∂t
(4.168)

So
#

dr3j ·E =

#
dr3

!∇×B

µ0
− ε0

∂E

∂t

"
·E (4.169)

The curl must act before the divergence, so let us look at the term

E ·
!
∇×B

"
= εijkEi∂jBk = εijk

%
∂j(EiBk)−Bk∂jEi

&
(4.170)

= −∇ ·
!
E×B

"
+B ·

!
∇×E

"
(4.171)

= −∇ ·
!
E×B

"
−B · ∂B

∂t
(4.172)

Plugging in we get
#

dr3j ·E = −
#

dr3
% 1

µ0
∇ ·

!
E×B

"
+

∂

∂t

! 1

2µ0
B ·B+

ε0
2
E ·E

"&

(4.173)

Matching the integrands we see that

∂

∂t

! 1

2µ0
B ·B+

ε0
2
E ·E

"
+

1

µ0
∇ ·

!
E×B

"
= −j ·E (4.174)

The term on the left is called the electromagnetic energy density uE . Written
in a more illuminating way, we have

−∂uE
∂t

= ∇ · S+ j ·E (4.175)

This is effectively an energy conservation equation. It says the decrease in
energy per unit volume (−∂uE/∂t) is equal to the energy that leaves the
volume (∇ · S) plus the work done on the charges (j ·E).
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4.10 Radiation

Electromagnetic radiation is caused by the acceleration of charged particles.
The primary equation that simplifies almost all of radiation and makes the
math bearable takes a long time to derive5 gives us the power radiated per
solid angle as

dP

dΩ
=

1

cµ0

<<<r×
∂Aret

∂t

<<<
2

(4.176)

We know that the Poynting vector tells us the flux of energy through each
unit surface area per unit time, so if we added up all the flux through an
entire surface, we would get the total power radiated. We can thinking about
doing things as follows (this is just an area integral in Spherical coordinates).
We first add up all the flux going through a ring created by the distance
from the z axis (r sin θ) at some given θ value

dPring(r) =

# 2π

0
dφr sin θ S · r̂ (4.177)

Then we just add up all these contributions for each θ value

P (r) =

# π

0
rdθ dPring(r) (4.178)

So we see the total flux through a given surface is just

P =

#
dΩ r2S · r̂ (4.179)

This gives us our expression for the differential power radiated per solid
angle as just the integrand of this expression

dP

dΩ
= r2S · r̂ =

r2

µ0
r̂ ·

!
E×B

"
(4.180)

Typically when looking at radiation, we care about what the field looks
like very far away. Skipping ahead and looking at the form of the radiation
fields in equation 4.194, most of the terms have 1/r2 or more dependence,
which means that very far away from the source, these contributions will
be next to nothing. There are a few that this is not the case for, called
the radiation fields, which, when multiplied by the r2 that comes from the

5Zangwill pg. 735
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surface integral, give a factor with no dependence on r, which means there
will always be the same amount of power that travels through a sphere of
any size. This is what we call radiation. For a wave traveling in free space
the electric and magnetic field are always perpendicular to each other, and
to the direction of travel, so we know that

r̂ = Ê × B̂ (4.181)

So plugging into our expression for power radiated, we see

dP

dΩ
=

r2

µ0
r̂ ·

!
E×B

"
=

r2

µ0
r̂ ·

!
Ê × B̂

"
|E||B| (4.182)

We also know from Maxwell’s equations in free space that

|E| = c|B| (4.183)

So we see that

dP

dΩ
=

r2

µ0c
|E|2 (4.184)

There seems to be endless variations on how you expression the radiated
power, I suppose the best idea for attacking radiation problems is find the
formulation that sits the best in your head. A useful equation that comes
up often is the Larmor formula which says

P =
1

4πε0

2q2|aret|2
3c3

(4.185)

4.10.1 Electric Dipole Radiation

The current density of a dipole at the origin is given by

j(r, t) = ṗ(t)δ(r) (4.186)

Which is equivalent to thinking about the charge in the dipole oscillating
back and forth between its two poles, but the poles not moving at all. This
is likely the easiest and most sensible place to start the derivation of the rest
of dipole radiation. We can plug this into equation 4.166 and have

A(r, t) =
µ0

4π

#
dr′3

ṗ(t− |r− r′|/c)
|r− r′| δ(r′) =

µ0

4π

ṗ(t− r/c)

r
(4.187)
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Using the Lorenz gauge condition we can find the potential with

ϕ = −c2
#

dt∇ ·A (4.188)

= − 1

4πε0

#
dt
%1
r
∂iṗi + ṗi∂i

1

r

&
(4.189)

= − 1

4πε0

#
dt
%1
r
p̈i∂i(t− r/c)− ṗi

1

r2
∂ir

&
(4.190)

=
1

4πε0

#
du

p̈i(u)ri
r2c

+
ṗi(u)ri

r3
(4.191)

ϕ(r, t) =
1

4πε0

% ṗ(t− r/c) · r
r2c

+
p(t− r/c) · r

r3

&
(4.192)

To find the field’s we have to plug them into the definitions we used to create
the potentials first of all with

B = ∇×A E = −∇ϕ− ∂A

∂t
(4.193)

This gives us the fields as

B(r, t) = −µ0

4π
r̂ ×

% ṗret

r2
+

p̈ret

cr

&
(4.194)

E(r, t) =
1

4πε0

%3r̂(r̂ · pret)− pret

r3
+

3r̂(r̂ · ṗret)− ṗret

cr2
+

r̂(r̂ · p̈ret)− p̈ret

c2r

&

(4.195)

They’re pretty gross looking, but can be calculated with tensor notation.
the magnetic field is relatively straightforward, the electric field however
takes quite a while. The key is to just look at the denominators, so if you
are very far away, r ≫ 0, then most of the other terms will be near zero.
The 1/r terms are the fields that are characteristic to radiation, as energy
they give off per solid angle is constant. The radiation fields are given by

B(r, t) = −µ0

4π
r̂ ×

! p̈ret

cr

"
(4.196)

E(r, t) =
1

4πε0

! r̂(r̂ · p̈ret)− p̈ret

c2r

"
(4.197)

4.11 Scattering

Starting with equation 4.176, we can time average it, looking at only the
real part of the field, which if we have a sinusoidal field oscillation, gives us

'dP
dΩ

(
=

1

2

dP

dΩ
(4.198)
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We can then plug this into the equation for differential scattering cross
section

dσ

dΩ
=

〈dP/dΩ〉
1
2ε0cE

2
0

(4.199)

Integrating this over the entire solid angle gives us the full cross section,
which is essentially how large of an object the incident wave sees when it is
first scattered. The algorithm goes as

1. Find the current density, using Newton’s laws, etc

2. Plug this into the equation for magnetic potential

3. Plug the time derivative of this into the equation for power radiated
per solid angle

4. Plug this into the equation for differential cross section

5. Integrate to find total cross section

4.11.1 Thomson Scattering

Thomson scattering is when a plane wave scatters off a single free electron.
It is the low energy (ω ≪ mc2/h̄) limit of Compton Scattering. We first find
the current density with Newton’s laws for a unbounded particle

mẍ = qE0e
iωtê0 (4.200)

We plug this into the equation for current density (one electron)

j(t, r) = qẋδ(r) =
−iq2E0

mω
eiωtê0 (4.201)

Plug into equation for magnetic potential, take a derivative, then plug in for
average power per solid angle

'dP
dΩ

(
=

1

2

µ0

c

!q2E2
0

4πm

"2
|r̂ × ê0|2 (4.202)

Plug in for cross section

dσ

dΩ
=

〈dP/dΩ〉
1
2ε0cE

2
0

=
! q2

4πmε0c2

"2
|r̂ × ê0|2 (4.203)
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It turns out if we set the rest energy of an electron equation to it’s potential
energy, we get

mc2 =
q2

4πε0re
→ re =

q2

4πε0mc2
(4.204)

So re is in some sense the ’radius of the electron’ and is technically called
the classical electron radius. Plugging this in, our equation becomes

dσ

dΩ
= r2e |r̂ × ê0|2 (4.205)

Where r̂ points in the direction of wherever you are observing from, and ê0
points in the direction of the electric field polarization of the initial plane
wave. An important result is the differential cross section from unpolarized
light. If we have the incident wave comes from the z direction and is po-
larized making an angle γ with the x axis, we can explicitly do the cross
product getting.

|r̂ × ê0|2 = cos2 θ + sin2 θ sin2(γ − φ) (4.206)

We can average this over the angle γ, since it polarized equally in each
direction, i.e. not polarized, and get

dσ

dΩ
= r2e |r̂ × ê0|2 = r2e

!
cos2 θ +

1

2
sin2 θ

"
(4.207)

=
1

2
r2e

!
1 + cos2 θ

"
(4.208)

We can integrate this over the entire solid angle and find

σ =
8π

3
r2e (4.209)

Normally we would think the surface area that a plane wave would see
when looking at the electron would just be the area of a circle created by
it’s projection σ = πr2e , but it’s not for some reason (more in Carter’s notes).

4.11.2 Rayleigh Scattering

Rayleigh scattering is why the sky is blue. This type of scattering happens
when the object being scattered off of is much smaller than the wavelength
of the light hitting it. In the sky, Nitrogen (the majority of the stuff that
makes it up) has a radius of ∼ 0.155 nm whereas blue light has a wavelength
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of ∼ 450 nm. In this regime, over the entire particle, the phase of the light
hitting it is all roughly the same, since it is so small.

Rayleigh scattering is also the cause of why some eyes are blue colored.
It turns out in blue eyes, there is a low concentration of melanin, which
evidently acts like a dipole radiator with power radiated like ω4.6

4.11.3 Mie Scattering

Mie scattering happens when the wavelength incident on the object is com-
parable with the size of the object itself. This type of scattering is possibly
the cause of grey eyes, which have larger deposits of collagen in the stroma,
which are larger in size than the melanin. This is analogous to scattering
off of clouds vs scattering off the sky itself.

Essentially what happens here is within the entirety of the particle, each
’dipole’ is at a different phase, which causes constructive and destructive
interference.

4.11.4 Relativistic Electromagnetism

Key equations to learn are

E′
|| = E|| E′

⊥ = γ(E⊥ + v×B⊥) (4.210)

B′
|| = B|| B′

⊥ = γ
!
B⊥ − v×E⊥

c2

"
(4.211)

This says that if we have another frame moving next to us with velocity v,
the fields parallel to the direction of travel are exactly the same as the ones
they see, but the ones perpendicular the the direction of travel are changed.
We can also write the potential and current as a four vector.

Aµ ≡ (Φ/c,Ax, Ay, Az) (4.212)

jµ ≡ (ρc, jx, jy, jz) (4.213)

ρ is the charge density, j is the current density. Remember the latter equa-
tion with the charge conservation formula, which can be written as ∂µj

µ = 0.
Gauge invariance can be rewritten as

A′
µ = Aµ + ∂µθ

If you take the derivative of A′
µ, you get

6https://en.wikipedia.org/wiki/Eye_color

https://en.wikipedia.org/wiki/Eye_color
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∂νA
′
µ = ∂νAµ + ∂ν∂µθ (4.214)

=⇒ ∂ν∂µθ = ∂µ∂νθ (4.215)

∂νA
′
µ − ∂νAµ = ∂µA

′
ν − ∂µAν (4.216)

Fµν ≡ ∂µA
′
ν − ∂νA

′
µ = ∂µAν − ∂νAµ (4.217)

(4.218)

This invariant tensor is called the field strength. Lets calculate F01.

F01 = ∂0A1 − ∂1A0 (4.219)

=
1

c
∂tAx + ∂xΦ/c (4.220)

= −Ex/c (4.221)

The rest of the differentiation yields this invariant traceless, antisym-
metric matrix to be

Fµν =

*

++,

0 −E1/c −E2/c −E3/c
E1/c 0 B3 −B2

E2/c −B3 0 B1

E3/c B2 −B1 0

-

../

You can find Fµν by simply multiplying the first column and first row
by −1

∂µF
µν = jν

4.11.5 Lienard-Wiechert Potentials

The Lienard Wiechert potentials come directly from Maxwell’s equations,
but happen to be relativistically correct. They describe the potentials of
a moving point charge. Due to Lorentz contraction (Equation 1.31) of the
dimension in which the particle is traveling, The distance between

ϕ(r, t) =
1

4πε0

! q

(1− n̂ · v
c )|r− r′|

"

tr
(4.222)

A(r, t) =
v(tr)

c2
ϕ(r, t) (4.223)

Where n̂ = r−r′

|r−r′|



Chapter 5

Mathematics

5.1 Formalism

Typically to avoid writing
2

’s all over the place there is a short hand for
repeated indices with

a · b =

3$

i=1

aibi = aibi (5.1)

Where i = x, y, z. This notation is called Einstein notation.

5.1.1 Levi-Cevita Symbol

Levi-Civita symbol (εijk) is an antisymmetric tensor and is equal to 1 if the
components are in order right to left (i.e. ijk = 123 or 312 or 231), is −1
if the are out of order, and 0 if not a cycle (i.e. ijk = 122). Some useful
identities while using tensor notation are

εijkεimn = δjmδkn − δjnδkm (5.2)

5.1.2 Reducing Vector Identities to Components

For order of operations, remember that you just take the curl before doing
the divergence! A nice way to break down complicated vector functions is
to break them down into components. For instance

(A×B)i = εijkAjBk (5.3)

113
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Where the summation over j and k is implied. An example of how it is used
is given below

∇ ·A×B =
$

∂i(εijkAjBk) (5.4)

= ∂0(ε012A1B2 + ε021A2B1) + ... (5.5)

= B2∂0A1 +A1∂0B2 −B1∂0A2 −A2∂0B1 + ... (5.6)

= (∇×A) ·B−A · (∇×B) (5.7)

Another nice identity, in somewhat sloppy notation is

∇r = ∂ir = ∂i

)$
r2j =

1

2

1)2
r2j

∂ir
2
j (5.8)

=
1

r
δijrj (5.9)

=
ri
r

= r̂ (5.10)

5.2 Special Functions

5.2.1 Complete and Orthogonal Sets of Functions

A set of eigenfunctions ψn is said to be complete on the interval a ≤ x ≤ b, if
we can write any function as some linear combination of those eigenfunctions

f(x) =

∞$

n=0

Anψn(x) a ≤ x ≤ b (5.11)

This property actually falls out of the closure relation
$

n

ψn(x)ψ
∗
n(x

′) = δ(x− x′) (5.12)

since

f(x) =

# b

a
dx′δ(x− x′)f(x′) (5.13)

=
$

n

ψn(x)

#
dx′ψ∗

n(x
′)f(x′) (5.14)

Which lets us find the coefficients, matching terms with equation 5.11

An =

# b

a
dxf(x)ψ∗

n(x) (5.15)
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Using f(x) = ψm(x) we see that

ψm(x) =
$

n

ψn(x)

#
dx′ψ∗

n(x
′)ψm(x′) (5.16)

Which, because we are summing orthogonal functions, we have to have the
integral in the sum evaluate to

#
dx′ψ∗

n(x
′)ψm(x′) = δnm (5.17)

This is the orthonormal relation. A simple example is with sines and cosines,
with the relation

# π

0
dx sin(mx) sin(m′x) =

π

2
δmm′ (5.18)

Which can be remembered putting the trigfunctions in exponential form
because

# 2π

0
dθ ei(m−m′)θ = 2πδmm′ (5.19)

5.2.2 Legendre Polynomials

In Electrodynamics, it is common when looking at potentials to have ex-
pressions that look like

1

|r− r′| =
1

r
)

1− 2 r′
r cos θ + r′2

r2

(5.20)

Where θ is the angle between r, the point you are looking at and r′ the
location of the charge. Conveniently, the Legendre Polynomials are defined
as

1√
1− 2xt+ t2

≡
∞$

l=0

tlPl(x) (5.21)

So taking t = r′

r and x = cos θ, we can write

1

|r− r′| =
1

r

∞$

l=0

!r′

r

"l
Pl(cos θ) r′ < r (5.22)
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We can also expand in the opposite case, just dividing a bit differently,
yielding

1

|r− r′| =
1

r′

∞$

l=0

! r

r′

"l
Pl(cos θ) r < r′ (5.23)

These are easy to remember thinking about how they look at zero. The first
few are given by

P0(x) = 1 (5.24)

P1(x) = x (5.25)

P2(x) =
1

2
(3x2 − 1) (5.26)

One nice thing to remember is that the subscript tells us the highest
power of the polynomial in the series. If you ever need to derive these
on a test, you can just Taylor expand equation 5.21 to find them. These
function also obey a nice set of properties that are usually exploited in
various Electrostatic problems. They are complete (up to a constant), with

# 1

−1
dx Pn(x)Pm(x) =

2

2n+ 1
δnm (5.27)

and
∞$

n=0

2n+ 1

2
Pn(x)Pn(x

′) = δ(x− x′) (5.28)

They are also somewhat symmetric with respect to x, with

Pn(−x) = (−1)nPn(x) (5.29)

It also happens that for any polynomial

Pn(1) = 1 (5.30)

Which can be seen because Equation 5.21 breaks down into the equation for
a Geometric series

14
(1− t)2

=
1

1− t
= 1 + t+ t2 + t3 + ... (5.31)

The Legendre Polynomials can also be defined as the solution to the
differential equation

d

dx

%
(1− x2)

d

dx
Pn(x)

&
+ n(n+ 1)Pn(x) = 0 (5.32)
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5.2.3 Associated Legendre Polynomials

By just taking the derivative of the standard Legendre polynomials with
respect to x a total of m times then multiplying by some extra stuff, we get
a whole bunch of new equations that also happen to be very important with

Pm
l (x) = (−1)m(1− x2)m/2 dm

dxm
Pl(x) (5.33)

We can then find negative m ones with

P−m
l = (−1)m

(l −m)!

(l +m)!
Pm
l (5.34)

They are also solutions to the differential equation

d

dx

%
(1− x2)

d

dx
Pm
l (x)

&
+

%
l(l + 1)− m2

1− x2

&
Pm
l (x) = 0 (5.35)

It turns out that the associated Legendre polynomials aren’t even in
general actual polynomials, but just carry the name from the their relation
to the Legendre generating function. The first few go like

P 0
0 (x) = 1 (5.36)

P−1
1 (x) = −1

2
P 1
1 (x) (5.37)

P 0
1 (x) = x (5.38)

P 1
1 (x) = −(1− x2)1/2 (5.39)

Where all of the associated Legendre polynomials should be identical to the
regular Legendre polynomials when m = 0 as seen in equation 5.33.

5.2.4 Spherical Harmonics

Typical notation goes as

#
dΩ =

# 2π

0
dφ

# π

0
dθ sin θ (5.40)

Where Ω is called the solid angle. These guys are also orthonormal (note
the complex conjugate!)

#
dΩ Y ∗

lm(Ω)Yl′m′(Ω) = δll′δmm′ (5.41)



118 CHAPTER 5. MATHEMATICS

They’re analogous to sin θ except in two dimensions instead of just one.
They are also complete with

∞$

l=0

l$

m=−l

Y ∗
lm(Ω)Yl′m′(Ω) =

1

sin θ
δ(θ − θ′)δ(φ− φ′) (5.42)

When we have spherical, but non-azimuthal symmetry when using Laplace’s
equation, since the argument is actually Pl(cos γ), where γ is the angle be-
tween one point in spherical coordinates (θ,φ) and another (θ′,φ′) , we can
expand the Legendre Polynomials in terms of the Spherical Harmonics, since
they are complete.

Pl(cos γ) =
4π

2l + 1

l$

m=−l

Y ∗
lm(θ′,φ′)Ylm(θ,φ) (5.43)

Their polar portion come from the associated Legendre polynomials,
with

Y m
l (θ,φ) ∼ Pm

l (cos θ)eimφ (5.44)

Y m∗
l = (−1)mY −m

l (5.45)

The first few look like

Y 0
0 =

! 1

4π

"1/2
(5.46)

Y 0
1 =

! 3

4π

"1/2
cos θ (5.47)

Y ±1
1 = ∓

! 3

8π

"1/2
sin θe±iφ (5.48)

A nice trick to evaluating certain integrals is recognizing how to put
Cartesian variables into the forms of spherical harmonics, with

x = r sin θ cosφ = r

5
2π

3

!
Y −1
1 − Y 1

1

"
(5.49)

y = r sin θ sinφ = ir

5
2π

3

!
Y −1
1 + Y 1

1

"
(5.50)

z = r cos θ = 2r

5
π

3
Y 0
1 (5.51)
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5.2.5 Bessel Functions

These show up in Laplace’s equation in Cylindrical coordinates. J(x) is the
Bessel function of the first kind, and N(x) the Bessel function of the second
kind. Often in problem we can get rid of the second kind ones since

Nα(x → 0) = −∞ (5.52)

In the limit of x ≫ 1, they break down into a somewhat more palatable
form, with

Jα ∼ 1√
x
cos

!
x− φ(α)

"
(5.53)

Nα ∼ 1√
x
sin

!
x− φ(α)

"
(5.54)

Where φ(α) is some phase dependent on α

5.2.6 Spherical Bessel Functions

These come from the radial portion of the Helmholtz equation in spherical
coordinates

jl(x) = (−x)l
!1
x

d

dx

"l sinx

x
(5.55)

yl(x) = −(−x)l
!1
x

d

dx

"l cosx

x
(5.56)

The first one is known as the (unnormalized) sinc function with

j0(x) =
sinx

x
(5.57)

5.2.7 Airy Functions

When looking at linear potentials in quantum mechanics, which happen
when looking at the first order Taylor expansion on a potential wall, the
Schrodinger equation usually boils down (after u substituting away the con-
stant energy term) into the form of

0 =
! d2

dx2
− x

"
ψ(x) (5.58)

This equation is solved by

ψ(x) = aAi(x) + bBi(x) (5.59)
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I don’t imagine we will ever need to know much more about this function
outside of its limits, which look like

Ai(x) ≈ e−x x ≫ 0 (5.60)

Bi(x) ≈ ex x ≫ 0 (5.61)

(5.62)

These functions are not symmetric about the origin (because of the non-
symmetric potential x) which causes them to look differently when x is
negative, with

Ai(x) ≈ sinx x ≪ 0 (5.63)

Bi(x) ≈ cosx x ≪ 0 (5.64)

(5.65)

Intuitively, this happens because the energy is greater than the potential on
one side, which swaps signs at the origin. which changes the exponential
oscillation into growth or decay.

5.2.8 Dirac Delta Function

The Dirac delta function in other coordinate systems can be found knowing
that always

# ∞

−∞
dxδ(x− x′) = 1 (5.66)

As long as the region you are integrating over contains x′. Extrapolating to
Cylindrical

#
dr3δ(r− r′) =

# 2π

0
dθ

# ∞

−∞
dz

# ∞

0
drr δ(r− r′) = 1 (5.67)

This tells us that in cylindrical coordinates

δ(r− r′) =
1

r
δ(r − r′)δ(θ − θ′)δ(z − z′) (5.68)

Similarly in spherical coordinates

δ(r− r′) =
1

r2 sin θ
δ(r − r′)δ(θ − θ′)δ(φ− φ′) (5.69)
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5.2.9 Heaviside Function

Incidentally not named because one side is ”heavier” than the other but
actually from Oliver Heaviside

H(x) =

6
0 x < 0

1 x ≥ 0
(5.70)

(5.71)

It also has an infinite slope at the origin, so the derivative of it is in fact
the Dirac delta function

d

dx
H(x) = δ(x) (5.72)

This function is also useful in expressing charge densities as it implicitly
changes the bounds of integrals. For instance if we have a charged disk with
charge per unit area σ = Q/πR2, we can express the volume charge density
knowing that

Q =

#
dr3ρ(r) =

# ∞

−∞
dz

# 2π

0
dθ

# ∞

0
dr rσf(z)g(θ)h(r) (5.73)

Charge is only in the middle where z = 0, so

f(z) = δ(z) (5.74)

Charge distribution is independent of θ, so

g(θ) = 1 (5.75)

Charge distribution only extends to r = R, and everything else will make
the integral evaulate to σπR2 so

h(r) = H(R− r) (5.76)

Therefore we have

ρ(r) = δ(z)H(R− r) (5.77)
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5.2.10 Green’s Functions

In Physics, there are often times where you are given some differential equa-
tion that looks like

Lu(x) = f(x) (5.78)

Where L is some linear differential operator, like d/dx or (3x+d2/dx2). The
idea with Green’s functions is that it is often easier to solve the equation

LG(x, s) = δ(x− s) (5.79)

Where s is an arbitrary parameter that L does not act on. By only solving
this equation, we can add up any arbitrary amount of delta functions that
we want, thus reconstructing f(x), and incidentally get an expression for
u(x), with

L
!#

ds G(x, s)f(s)
"
=

#
ds δ(x− s)f(s) = f(x) (5.80)

By comparing this equation to equation 5.78, we see that

u(x) =

#
ds G(x, s)f(s) (5.81)

So if we have both the Green’s function and f(x), we can plug it into this
expression to solve for u(x).

5.2.11 Riemann-Zeta Function

Defined as

ζ(s) =
1

Γ(s)

# ∞

0

1

ex − 1
xs

dx

x
(5.82)

For all (potentially complex) s with real part greater than 1. This integral
shows up often in Bose-Einstein statistics integrals. It can also be defined
as

ζ(s) =

∞$

n=1

n−s =
1

1s
+

1

2s
+

1

3s
+ ... (5.83)
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This looks not so bad, but, re-
member s is potentially a complex
number, which makes these functions
nutty. See the picture to the right,
which is a plot of the Riemann-Zeta
function as a function of a complex
number ζ(z) This summation is the
analytic continuation of this series if
it were just a real number.

5.3 Non-Cartesian Geometries

The best way to remember these is remembering the gradient in whichever
coordinate system

∇f = whatever (5.84)

And also the divergence

∇ ·A = something (5.85)

Then using the identity

∇2f = ∇ ·∇f (5.86)

to get the Laplacian

5.3.1 Spherical Coordinates

Taking θ as the polar angle (goes from 0 to π) and φ as the azimuthal angle
(goes from 0 to 2π), we have the relations that

x = r sin θ cosφ (5.87)

y = r sin θ sinφ (5.88)

z = r cos θ (5.89)
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The gradient is given by

∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂φ
φ̂ (5.90)

And the divergence

∇ ·A =
1

r2
∂(r2Ar)

∂r
+

1

r sin θ

∂

∂θ
(Aθ sin θ) +

1

r sin θ

∂Aφ

∂φ
(5.91)

Using the method outlined before, the Laplacian in Spherical coordinates is
then given as

∇2 ≡ 1

r2
∂

∂r

!
r2

∂

∂r

"
+

1

r2 sin θ

∂

∂θ

!
sin θ

∂

∂θ

"
+

1

r2 sin2 θ

∂2

∂φ2
(5.92)

We can also show that

∇2 1

r
= −∇ · r̂

r2
= −4πδ(r) (5.93)

Since
#

d3r δ(r) = 1 (5.94)

And
#

d3r∇2
!1
r

"
=

#
d3r∇ ·∇

!1
r

"
=

#
d3r∇ ·− 1

r2
r̂ (5.95)

This looks like it is zero now, but using Gauss’ law we see that

−
#

d3r∇ · 1

r2
r̂ = −

#
dS · 1

r2
r̂ = −

# 2π

0
dφ

# 1

−1
d(cos θ) = −4π (5.96)

Where we converted the volume integral on the left to a surface integral
which does not depend on r at all. Thus we see we can match the integrands,
giving us the result of equation 5.93.

=

>
x̂
ŷ
ẑ

?

@ =

=

>
sin θ cosφ cos θ cosφ − sinφ
sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0

?

@

=

>
ρ̂

θ̂

φ̂

?

@ (5.97)

An easy way to ”derive” these in a pinch is looking at equation 5.87, then
taking the derivative in the order r, θ,φ, getting rid of all the terms depen-
dent on the last variable as you proceed (elaborate more).
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5.3.2 Cylindrical Coordinates

The gradient is

∇f =
∂f

∂ρ
ρ̂+

1

ρ

∂f

∂θ
θ̂ +

∂f

∂z
ẑ (5.98)

The divergence is

∇ ·A =
1

ρ

∂ (ρAρ)

∂ρ
+

1

ρ

∂Aθ

∂θ
+

∂Az

∂z
(5.99)

This gives the Laplacian as

∇2f =
1

ρ

∂

∂ρ

0
ρ
∂f

∂ρ

1
+

1

ρ2
∂2f

∂θ2
+

∂2f

∂z2
(5.100)

=

>
r̂

θ̂
ẑ

?

@ =

=

>
cos θ sin θ 0
− sin θ cos θ 0

0 0 1

?

@

=

>
x̂
ŷ
ẑ

?

@ (5.101)

5.4 Vector Calculus

∇ · uv = ∇u · v+ u∇ · v (5.102)

5.4.1 Spherical Poisson Equation

Let’s say we have a differential equation that looks like

%
∇2 − k2 + f(r)

&
ψ(r, θ,φ) = 0 (5.103)

We first assume separability of the function

ψ(r, θ,φ) = R(r)Y (θ,φ) (5.104)

Use the spherical Laplacian (Section 5.87) to turn the equation into

Y

r2
∂

∂r

!
r2

∂R

∂r

"
+

R

r2 sin θ

∂

∂θ

!
sin θ

∂Y

∂θ

"
+

R

r2 sin2 θ

∂2Y

∂φ2
+

!
k2 − f(r)

"
RY = 0

(5.105)
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Now we can divide everything by Y R/r2 to get

% 1
R

∂

∂r

!
r2

∂R

∂r

"
−

!
k2 − f(r)

"
r2
&

(5.106)

+
% 1

Y sin θ

∂

∂θ

!
sin θ

∂Y

∂θ

"
+

1

Y sin2 θ

∂2Y

∂φ2

&
= 0 (5.107)

Because we can isolate all of the variables together and they are all indepen-
dent of each other, each of the equations in brackets alone must be equal at
least to a constant that cancels out. So calling that constant C we have

1

R

∂

∂r

!
r2

∂R

∂r

"
−
!
k2 − f(r)

"
r2 = C (5.108)

1

Y sin θ

∂

∂θ

!
sin θ

∂Y

∂θ

"
+

1

Y sin2 θ

∂2Y

∂φ2
= −C (5.109)

• Let’s take a tangent and pretend that the solution is not dependent
on φ at all (Azimuthal symmetry), then our equation becomes

1

Y sin θ

∂

∂θ

!
sin θ

∂Y

∂θ

"
= −C (5.110)

• We can create a new variable

x = cos θ → ∂

∂θ
=

dx

dθ

∂

∂x
(5.111)

= − sin θ
∂

∂x
(5.112)

• Rewriting equation 5.110 in terms of x, we see that

1

Y

∂

∂x

!
sin2 θ

∂Y

∂x

"
= −C (5.113)

• Using sin2 θ = 1− cos2 θ = 1− x2, we get the differential in the form

d

dx

!
(1− x2)

d

dx
Y
"
+ CY = 0 (5.114)

Which is the exact form of the Legendre Polynomials in equation 5.32
with C = l(l + 1) and Y (θ) = Pl(cos θ). Thus we see if we have az-
imuthal symmetry, we are free to use these for things to solve Laplace’s
equation.
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From now on, we write C = l(l + 1), because of the reduction to Legendre
polynomials that happens when we have no angular dependence. Looking
now at the angular portion, we again use seperation of variables

Y (θ,φ) = Θ(θ)Φ(φ) (5.115)

We plug this into the angular equation and moving things around we get

1

Θ

%
sin θ

∂

∂θ

!
sin θ

∂Θ

∂θ

"&
+ l(l + 1) sin2 θ = − 1

Φ

∂2Φ

∂φ2
(5.116)

We do the same trick with the constants, here using a bit of foresight, calling

1

Θ

%
sin θ

∂

∂θ

!
sin θ

∂Θ

∂θ

"&
+ l(l + 1) sin2 θ = m2 (5.117)

1

Φ

∂2Φ

∂φ2
= −m2 (5.118)

Solve the easy φ one, without caring for normalization

d2Φ

dφ2
= −m2Φ → Φ(φ) = eimφ (5.119)

Since Φ(φ) = Φ(φ+ 2π) we have to have that

m = 0,±1,±2,±3, ... (5.120)

For the θ equation, we have that

sin θ
∂

∂θ

!
sin θ

∂Θ

∂θ

"
+

%
l(l + 1) sin2 θ −m2

&
Θ = 0 (5.121)

We can then make the same substitution as in equation 5.111 to write the
equation as

(1− x2)
d

dx

!
(1− x2)

dΘ

dx

"
+
!
l(l + 1)(1− x2)−m2

"
Θ = 0 (5.122)

The solution to this is the same as the associated Legendre Polynomials
defined in 5.35 with Θ(θ) = Pm

l (cos θ). So up to a constant, we have 2/3rd’s
of the solution, with

Y m
l (θ,φ) = αlm Pm

l (cos θ)eimφ (5.123)
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The radial portion is therefore

1

R

∂

∂r

!
r2

∂R

∂r

"
−
!
k2 − f(r)

"
r2 = l(l + 1) (5.124)

We now change variables to simply the equations with

u(r) ≡ rR(r) (5.125)

Which simplifies the kinetic term with

∂

∂r

!
r2

∂

∂r

u(r)

r

"
=

∂

∂r

%
r
∂u(r)

∂r
− u(r)

&
(5.126)

=
∂u(r)

∂r
+ r

∂2u(r)

∂r2
− ∂u(r)

∂r
(5.127)

= r
∂2u(r)

∂r2
(5.128)

So the equation becomes

∂2u(r)

∂r2
−

!
k2 − f(r)

"
u(r)− l(l + 1)

r2
u(r) = 0 (5.129)

From here, we need the form of f(r) to proceed.

5.4.2 Cylindrical Laplaces Equation

We first assume seperability of the potential

ϕ(r, θ, z) = R(r)Θ(θ)Z(z) (5.130)

In cylindrical coordinates we have

∇2ϕ =
ZΘ

ρ

∂

∂ρ

0
ρ
∂R

∂ρ

1
+

ZR

ρ2
∂2Θ

∂θ2
+RΘ

∂2Z

∂z2
= 0 (5.131)

Dividing by the potential, we get

∇2ϕ =
1

Rρ

∂

∂ρ

0
ρ
∂R

∂ρ

1
+

1

Θρ2
∂2Θ

∂θ2
+

1

Z

∂2Z

∂z2
= 0 (5.132)

We now have the z part seperated out so we can set that equal to a constant,
with

−
% 1

Rρ

∂

∂ρ

0
ρ
∂R

∂ρ

1
+

1

Θρ2
∂2Θ

∂θ2

&
= k2 =

1

Z

∂2Z

∂z2
(5.133)
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We can solve the z part relatively easily, shown in section 4.3.3. Rewriting
the the left side, with the constant, we have

% ρ
R

∂

∂ρ

0
ρ
∂R

∂ρ

1
+ k2ρ2

&
+

1

Θ

∂2Θ

∂θ2
= 0 (5.134)

Calling the Θ equation a constant, we get

ρ

R

∂

∂ρ

0
ρ
∂R

∂ρ

1
+ k2ρ2 = α2 = − 1

Θ

∂2Θ

∂θ2
(5.135)

The Θ one is again easy to solve, but the remaining one becomes tough,
with

ρ
∂

∂ρ

0
ρ
∂R

∂ρ

1
+ (k2ρ2 − α2)R = 0 (5.136)

This one is solved with Bessel functions, or other things depending on what
form the constants take.

5.5 Lagrange Multipliers

Given some function F (x, y, z, ...) under the constraint that G(x, y, z, ...) =
0, we solve for the extremum of F under the constraint by minimizing

F ′ = F + λG (5.137)

We take the derivative with respect to each coordinate and obtain some
function that lets us solve for one of the variables in terms of the multiplier
λ, then once we do that for all the variables x, y, z, ... we can plug it back
into our original constraint, solve for λ numerically, then obtain what the
values of x, y, z, ... are from our previous expressions which gave them in
terms of λ. For example

F (x, y) = x2 + y2 G(x, y) = x+ y − 1 = 0 (5.138)

(5.139)

=⇒ F ′ = x2 + y2 + λ(x+ y − 1)

This gives us the equations

2x+ λ = 0 (5.140)

=⇒ x = −λ/2 (5.141)

2y + λ = 0 (5.142)

=⇒ y = −λ/2 (5.143)

(5.144)
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Plugging back into our constraint gives us

−λ− 1 = 0 (5.145)

=⇒ λ = −1 (5.146)

Which tells us that F is at an extremum when x = y = 1/2. This is
then generalized with more constraints by simply adding more Lagrange
multipliers for each constraint, and minimizing in the same way. These
constraints are the essence of statistical mechanics, where we try to maximize
the entropy, under constraints of total energy, etc.

5.6 Taylor Expansion

Taylor expansion is an incredibly useful tool if we know how some function
behaves at one place, and want to see what would happen if we changed one
of the parameters it depends on by a small amount.

f(x+ δ) = f(x) + δf ′(x) +
δ2

2!
f ′′(x) + ... (5.147)

So if we have a crazy looking function that we don’t know how it looks,
we can just take the derivative of it a bunch of times (usually just once) and
multiply it by different factors of the small quantity δ.

5.6.1 Taylor Expanding Vectors

We can write a vector as

r = (rx, ry, rz)

If we want to Taylor expand to find the function at some point r′, we
have

f(r′) = f(r′x, r
′
y, r

′
z) (5.148)

(5.149)

First Taylor expand around r′x − rx

f(r′x, r
′
y, r

′
z) = f(rx, r

′
y, r

′
z) + (r′x − rx)

∂

∂x
f(rx, r

′
y, r

′
z) + ... (5.150)
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Then Taylor expand all these terms around r′y − ry

f(r′x, r
′
y, r

′
z) =

%
f(rx, ry, r

′
z) + (r′y − ry)

∂

∂y
f(rx, ry, r

′
z) + ...

&
(5.151)

+ (r′x − rx)
∂

∂x

%
f(rx, ry, r

′
z) +

∂

∂y
f(rx, ry, r

′
z)
&

(5.152)

Neglecting second order terms, we have

f(r′x, r
′
y, r

′
z) = f(rx, ry, r

′
z) + (r′x − rx)

∂

∂x
f(rx, ry, r

′
z) + (r′y − ry)

∂

∂y
f(rx, ry, r

′
z)

(5.153)

Now expanding these around r′z − rz, we get

f(r′x, r
′
y, r

′
z) =

%
f(rx, ry, rz) + (r′z − rz)

∂

∂z
f(rx, ry, rz)

&
(5.154)

+ (r′x − rx)
∂

∂x

%
f(rx, ry, rz) + (r′z − rz)

∂

∂z
f(rx, ry, rz)

&
(5.155)

+ (r′y − ry)
∂

∂y

%
f(rx, ry, rz) + (r′z − rz)

∂

∂z
f(rx, ry, rz)

&
(5.156)

Again neglecting second order terms, we get

f(r′x, r
′
y, r

′
z) = f(rx, ry, rz) + (r′x − rx)

∂

∂x
f(rx, ry, rz) (5.157)

+ (r′y − ry)
∂

∂y
f(rx, ry, rz) + (r′z − rz)

∂

∂z
f(rx, ry, rz) (5.158)

= f(rx, ry, rz) +
%
(r′x − rx)

∂

∂x
+ (r′y − ry)

∂

∂y
+ (r′z − rz)

∂

∂z

&
f(rx, ry, rz)

(5.159)

= f(r) + (r′ ·∇)f(r) (5.160)

In general, the expansion looks just like

f(r′) = f(r) + (r′ ·∇)f(r) +
1

2
(r′ ·∇)2f(r) + ...

5.7 Differential Equations

Many differential equations can be solved by simply guessing a set of poly-
nomials, then coming up with a relationship between coefficients (e.g. the
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Hermite Polynomials).

y(x) =

∞$

n=0

cnx
n (5.161)

5.7.1 Wronskian

If we have some differential equation to which we found multiple solutions
for (lets say there are just two φ1(x),φ2(x)), we can check if they are linearly
independent by computing the Wronskian W (φ1,φ2).

W (φ1,φ2) = φ1φ
′
2 − φ2φ

′
1 ∕= 0 (5.162)

Where the ′ is the derivative operator. If this quantity is non zero, then
the solutions are linearly independent. Which then let’s us write a general
solution to the differential equation as

φ(x) = A1φ1(x) +A2φ2(x) (5.163)

5.7.2 Continuity Equation

Just take the total time derivative of the whole thing, set it to zero, and
match vector components.

5.7.3 Forced Differential Equations

Given some differential equation, such as for the Foucault pendulum1, whose
first order equation looks like

ÿ + ω2
0y = 2Ωω0x0 sin(ω0t) (5.164)

We see we can solve the equation easily if it were only the lefthand side. In
order to solve a forced differential equation (which has the righthand side),
the algorithm is as follows

1. Solve the equation as if it didn’t have the forcing term (the homoge-
neous solution), in this case

ÿh + ω2
0yh = 0 (5.165)

=⇒ yh(t) = Ah cos(ω0t) +Bh sin(ω0t) (5.166)

1Taylor pg. 354
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2. Guess what the forced solution will look like (see Table 5.7.3), called
the particular solution. Here we will have

yp(t) = Ap cosω0t+Bp sinω0t (5.167)

3. Plug it in and solve for constants. If it doesn’t work, multiply the
solution by the independent variable. In this case, the trial function
doesn’t work (everything cancels on the left side), so we have to mul-
tiply by t

y′p(t) = t(Ap cosω0t+Bp sinω0t) (5.168)

=⇒ ẏ′p(t) = Ap cosω0t+Bp sinω0t+ t(−ω0Ap sinω0t+ ω0Bp cosω0t)

(5.169)

=⇒ ÿ′p(t) = −2ω0Ap sinω0t+ 2ω0Bp cosω0t+ t(−ω2
0Ap cosω0t− ω2

0Bp cosω0t)

(5.170)

(5.171)

Plugging into the initial differential equation

=⇒ − 2ω0Ap sinω0t+ 2ω0Bp cosω0t = 2Ωω0x0 sin(ω0t) (5.172)

(5.173)

This tells us that

Bp = 0 (5.174)

−2ω0Ap = 2Ωω0x0 (5.175)

=⇒ Ap = −Ωx0 (5.176)

Thus

y′p(t) = −Ωx0t cosω0t (5.177)

4. The summation of the two gives us the full solution

y(t) = yh(t) + yp(t) (5.178)

= (A− Ωx0t) cosω0t+B sinω0t (5.179)

5. Then plugging in for initial conditions lets us find the constants. Let’s
say that y(0) = 0, ẏ(0) = 0
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y(0) = 0 = A (5.180)

ẏ(0) = 0 = −Ωx0 + ω0B (5.181)

=⇒ B = Ωx0/ω0 (5.182)

Thus the full solution is given by

y(t) = −Ωx0t cosω0t+
Ω

ω0
x0 sinω0t (5.183)

Forcing Function Trial Forced Solution

const A

t At+B

tn Atn +Btn−1 + ...Et+ F

est Aest

sinωt, cosωt A sinωt+B cosωt

5.8 Linear Algebra

A unimodular matrix has determinant ±1

det(AB) = det(A)det(B)

The trace is invariant under cyclic permutations

tr(ABC) = tr(CAB) = tr(BCA) (5.184)

aibijcj = a ·B · b =
$

i

ai
$

j

bijcj

5.8.1 Tensors

The rank of a tensor is simply the number of indices needed to describe it.
A vector is a tensor of the first rank, and a general n×m matrix is a tensor
of the second rank. The tensor product of two 2x2 matrices is given by

A
a11 a21
a21 a22

B
⊗

A
b11 b21
b21 b22

B
=

=

CC>
a11

A
b11 b21
b21 b22

B
a21

A
b11 b21
b21 b22

B

a21

A
b11 b21
b21 b22

B
a22

A
b11 b21
b21 b22

B

?

DD@ (5.185)
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We can do this for any vector space by generalizing the form above. For
instance

A
a1
a2

B
⊗

A
b1
b2

B
=

=

CC>
a1

A
b1
b2

B

a2

A
b1
b2

B

?

DD@ (5.186)

Another important tensor operator is the direct sum, which is written
as

A
a11 a21
a21 a22

B
⊕

A
b11 b21
b21 b22

B
=

=

CC>

a11 a21 0 0
a21 a22 0 0
0 0 b11 b12
0 0 b21 b22

?

DD@ (5.187)

5.8.2 Determinant

For an arbitrarily sized matrix, can iterate this procedure.

1. Write out each value in the top row, alternating sign (+,−,+,−, ...)

2. Multiply each respective value by the determinant of the square matrix
created by the rows and columns that the value does not belong to

As an example a 4 x 4

<<<<<<<<

a b c d
e f g h
i j k l
m n o p

<<<<<<<<
= a

<<<<<<

f g h
j k l
n o p

<<<<<<
− b

<<<<<<

e g h
i k l
m o p

<<<<<<
+ c

<<<<<<

e f h
i j l
m n p

<<<<<<
− d

<<<<<<

e f g
i j k
m n o

<<<<<<

(5.188)

The matrix of a 3 x 3 is
<<<<<<

a b c
d e f
g h i

<<<<<<
= a

<<<<
e f
h i

<<<<− b

<<<<
d f
g i

<<<<+ c

<<<<
d e
g h

<<<< (5.189)

And 2 x 2
<<<<
a b
c d

<<<< = ad− bc. (5.190)
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5.8.3 Matrix Diagonalization

2

1. Find eigenvalues (λ1,λ2, ...,λN ) of matrix M with det(M− λI) = 0

2. Using the eigenvalues, find the corresponding eigenvectors by plugging
in each to (M− λiI)ai = 0

3. The diagonalized matrix T is now

T =

*

+++,

λ1 0 ... 0
0 λ2 ... 0
...

...
. . .

...
0 0 ... λN

-

.../

4. We need to find
M = STS−1

5. S−1 is equal to each eigenvector laid out as a column of the matrix,
placed according to where you place it with T

S−1 =

*

+++,

a(λ1)1 a(λ2)1 ... a(λN )1
a(λ1)2 a(λ2)2 ... a(λN )2

...
...

. . .
...

a(λ1)N a(λ2)N ... a(λN )N

-

.../

6. S can be calculated by simply inverting the matrix S−1

5.8.4 Simultaneous Eigenstates

To find a simultaneous set of eigenvectors for two operators, follow this:

• Given two 3x3 matrices

M =

*

,
1 0 1
0 0 0
1 0 1

-

/ D =

*

,
2 1 1
1 0 −1
1 −1 2

-

/

• First solve for their eigenvalues (λM = 0, 0, 2, λD = −1, 2, 3)

2Griffith’s Quantum Mechanics pg. 90
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• Next find both sets of unnormalized eigenvectors

λM →

*

,
a
b
−a

-

/ ,

*

,
a
b
−a

-

/ ,

*

,
a
0
−a

-

/ λD →

*

,
0
0
0

-

/ ,

*

,
a
a
−a

-

/ ,

*

,
a
0
−a

-

/

• Because D is not degenerate, correspond each vector to another vector
for degenerate M.

• Then just normalize the vectors as usual, and you have a set of eigen-
vectors for both matrices

5.9 Complex Analysis

In general one can write any complex number as the sum of its real and
complex part with

z = x+ iy (5.191)

(5.192)

The complex conjugate is the same thing as the normal complex number,
but with the sign in front of i switched

z∗ = x− iy (5.193)

(5.194)

The absolute value of any complex number is just

|z|2 = zz∗ = (x+ iy)(x− iy) = x2 + y2 (5.195)

We can also find the real part or imaginary part of any complex number by
rearranging the equation for it and its complex conjugate to find

x =
z + z∗

2
(5.196)

y =
z − z∗

2i
(5.197)

5.10 Combinatorics

A critical combinatorics formula is
0
n

k

1
=

n!

k!(n− k)!
(5.198)



138 CHAPTER 5. MATHEMATICS

Which tells us how may ways we can pick k objects out of a total of n of
them. Obviously we should have n > k, so the number is positive, which
means we should have n on the top.

5.10.1 Stirlings Approximation

lnN ! = ln
!
1× 2× 3× ...×N

"
(5.199)

=

N$

x=1

lnx (5.200)

≈
# N

1
dx lnx (5.201)

≈ x lnx− x
<<<
N

1
(5.202)

≈
!
N lnN −N

"
− 1 ln 1− 1 (5.203)

≈ N lnN −N (5.204)

(5.205)

Exponentiating both sides we get

N ! ≈ eN lnN−N (5.206)

≈ elnNN
e−N (5.207)

≈ NNe−N (5.208)

When N is large enough to make the conversion to the integral valid.

5.11 Integration

5.11.1 Exponentials

The Gaussian integral can be evaluated using a trick
# ∞

−∞
dx e−ax2

=? (5.209)

We square whatever it evaluates to, which allows us to write

(?)2 =
!# ∞

−∞
dx e−ax2

"2
=

# ∞

−∞
dx

# ∞

−∞
dy e−a(x2+y2) (5.210)
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Since both x and y are dummy variables. This is now effectively a 2 dimen-
sional area integral over the entire plane, which we can actually evaluate in
polar coordinates quite easily

# ∞

−∞
dx

# ∞

−∞
dy e−a(x2+y2) =

# 2π

0
dθ

# ∞

0
dr re−ar2 =

π

a

# ∞

0
du e−u =

π

a

(5.211)

So we see that we have that this gives us the relation, below. With just
these two equations, we can find expressions containing arbitrary powers of
x by taking the derivative of both sides with respect to the constant a.

# ∞

−∞
dx e−ax2

=

5
π

a

# ∞

0
dx e−ax =

1

a
(5.212)

For instance

d

da

# ∞

0
dxe−ax =

d

da

1

a
(5.213)

# ∞

0
dx xe−ax =

1

a2
(5.214)

One that comes up often that can be found by completing the square on the
normal Gaussian integral is

# ∞

−∞
dx e−ax2+bx =

5
π

a
eb

2/4a (5.215)

5.11.2 Tabular Integration by Parts

Given some integral that looks like

#
dx x3 cosx (5.216)

We want use integration by parts to see what it evaluates to. We would
normally have to use integration by parts many times, until we got the x
term to evaluate to zero, but there is a nice convention to evaluating all of
these quickly 3. The algorithm goes as

3Thanks to Bobby Dorst
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• Find the part of the equation which, when differentiated enough, even-
tually goes to zero, in our case this would be x3. At the same time, we
want to find we can integrate the remaining piece over and over again
without issues. cosx works

• Lay the two out in columns. Differentiate one side flipping the sign in
each other row, and integrate the right column

+x3 cosx

−3x2 sinx
+6x − cosx
−6 − sinx
0 cosx

• Now multiply diagonally, taking the top left, multiplying by right col-
umn one row lower. Then move down a row, summing it with what
you had before, until you reach the end. So we get

#
x3 cosx = x3 sinx+ 3x2 cosx− 6x sinx− 6 cosx (5.217)

5.12 Misc

5.12.1 Geometric Series

The geometric series is defined as

N−1$

n=0

arn = a
!1− rN

1− r

"
(5.218)

Which is only convergent for r < 1. To prove it, let’s call whatever the value
of the total series is equal to s, so we have

s = a+ ar + ar2 + ar3 + ...+ arN−1 (5.219)

Let’s multiply it by r

rs = ar + ar2 + ar3 + ...+ arN (5.220)

We recognize that the portion on the right is basically the same as the earlier
expression for s, so let’s plug in exactly what that is

rs = (s− a) + arN (5.221)
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Rearranging this, we find

(r − 1)s = a(rN − 1) (5.222)

Dividing through, we see that

N−1$

n=0

arn = s = a
!1− rN

1− r

"
(5.223)

5.12.2 Completing the Square

If we have some function that looks like

ax2 + bx+ c (5.224)

and we want it to look like

d(x+ e)2 + f (5.225)

We have that

ax2 + bx+ c = dx2 + 2edx+ de2 + f (5.226)

Matching powers of x, we get that

a = d (5.227)

b = 2ed (5.228)

c = de2 + f (5.229)

Solving these gives us

d = a e =
b

2a
f = c− b2

4a
(5.230)

5.12.3 Trigonometric Identities

sin(α± β) = sinα cosβ ± cosα sinβ (5.231)

cos(α± β) = cosα cosβ ∓ sinα sinβ (5.232)

With these identities we can derive the double angle formula, setting
α = β so

cos 2α = cos2 α− sin2 α (5.233)

= 2 cos2 α− 1 (5.234)
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The Law of Cosines is

c2 = a2 + b2 − 2ab cos θ (5.235)

Where θ is the angle between a and b. Can remember this because reduces
to the Pythagorean Theorem for θ = π/2 and when θ = π we have

c2 = a2 + b2 + 2ab = (a+ b)2 (5.236)

A much simpler way to recover this same identity is to draw out the vectors
themselves

a+ c = b → c = a− b (5.237)

Looking at the square of this, we have

c2 = a2 + b2 − 2a · b (5.238)

= a2 + b2 − 2ab cos θ (5.239)

You can always remember the derivatives of a trigonometric function by
looking at it’s Taylor expansion, and taking the derivative of that

sinx = x− x3

3!
+

x5

5!
+ ... (5.240)

cosx = 1− x2

2!
+

x4

41
+ ... (5.241)

Taking the derivative of sin for instances gives us

d

dx
sinx =

d

dx

!
x− x3

3!
+

x5

5!
+ ...

"
(5.242)

= 1− x2

2!
+

x4

41
+ ... (5.243)

= cosx (5.244)

5.12.4 Polynomial Algebra

Can find roots of polynomial equations with

−x2+ x+ 2
x+ 1 −x3+ 0+ 3x+2

− −x2− x
0+ x2

− x2+ x
0+ 2x

− 2x+2
0


