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Dice Example

@ Let's consider a model with 4 parameters = (1, 2, p3, ft4) which
predicts how often a face will be rolled from a 4 sided die.
@ The parameters of our model will be simply the probability of each
face being rolled in one throw
P(llp) =p1  P(3|u) = p3
P(2lp) = p2 P(4p) = pa
@ For collecting our data, we simply roll the die N number of times, and
find ny total times a 1 is rolled, etc. So we have

N:Zni 1:Z/Li (1)

November 3, 2017 2/12

Profile Likelihood

W. Nash, B. Stone (UCLA)



The Likelihood Function

e Without any data, the probability for getting n; 1's, ny 2's and n3 3's
and ng 4's in N total throws is given by the multinomial distribution

N!

ny, ny N3 nNng
P Lt B R !
3:N4:

P(n|u, N) = rmlnsinal

Where n = (ny, n2, n3, ng).
@ In general, if we have made an observation, we can consider its

Likelihood as being a function of our model’s parameters, instead a
function of the data we observed

L(p) = P(n|u, N)
@ In our case, the different n's are what we observe (fixed) giving us a
Likelihood function of

|
N! ny, np, N3 ng

L(/"[’) = n1!n2!n3!n4!,u1 R W
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We can look at the logarithm of the likelihood function since it gives us
the same answer as otherwise and we only care about differences.

NI u
F:—2|nL:—2[|n(m!nz!W)+2}nilnui] (2)

Since we have a constraint that the probabilities must add to 1, we can
use Lagrange multipliers to solve for the maximally likely fi;

4 4
N!

F:_2[|n<n1!n2!n3!n4!>+;ni|nui} +a[;ﬂi_1:| (3)

Taking the derivative with respect to u;, and solving for « in the standard

way!, we find the maximum likelihood estimates /i;, for i = 1,2,3,4 to be

n;

fi = N (4)

Lin backup
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Let's suppose that we only care about 1, and take the rest as nuisance
parameters. We let [i; for i # 1 be the ML estimate given uz. In order to
find the confidence interval, we need to find

A = L, fiizn)/ L(f2) (5)

Where X is called the likelihood ratio. A quick note on the notation:

Vector Description
7 The parameter(s) of interest, we can freely change these
i The maximum likelihood estimate for the parameter(s),
coordinate of the bottom of the "well”
,@,-751 The nuisance parameters that gives us the maximum likelihood
constrained to a value of py
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We already have L(fi) from just plugging in equation (4), but now we need
to find fi;+1. We do it in roughly the same way, but only maximize with
respect to some of the parameters®, we find that

= (6

fir 11—

So we have that our profile likelihood function

—2In)\——2[nlln'u—{—(N—nﬂln(iiZi)] (7)

Where our maximum likelihood estimate is

R n
fin = Nl (8)

2in backup
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Plotting the Likelihood distribution

We are now fully prepped to draw the likelihood well and find the
confidence interval. | wrote some code that randomly rolled N = 100 dice,
giving

n = 26 (9)
np =27 (10)
n3 =24 (11)
ng =23 (12)

| then wrote some code to plotted the log-likelihood ratio we found with

—2In)\_—2[26l 026+74| (0#1)} (13)

Moving in small steps around the maximum likelihood estimate of
fi1 = 0.26, we can find how the curve looks
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mul = B.2165 chi2 = 1.06685 mul = B.382 chiz = B.86184
mul = B.218 chiz = B.5991428 mul = B.3835 chi2 = B.59217585
mul = B.2185 chiz = 8.919815 mul = B.385 chi2 = B.984587
mul = B.221 chiz = 8.B489577 mul = B.3865 chiz = 1.84917
mul = B.2225 chi2 = B.7B3QB4 mul = B.308 chiz = 1.11576

Looking at the numerical values in the plot, we can determine our 68%
confidence interval for p; to be

[0.218,0.305] (14)

This tells us that for any of the u1's within the interval, our data would
fall within the 68% acceptance interval of uy (approximately by Wilk's
theorem).
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Equation (4) derivation: The function we want to maximize is

4 4
N!

We do this by taking the derivative with respect to one of the u;'s

OF n;

=—+a=0—>|4=—— 16

This tells us the maximum likelihood estimate for our parameter pu;, but
we still don't know «, so we to plug these back into our constraint

equation. In the case that all the parameters are maximized, we have

4
0:Zﬂi—lz—nl+n2+n3+n4—

- 1 (17)

i=1

This tells us & = —N and therefore fi = nj (18)
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Equation (6) derivation: We are looking for ﬁ,-;,gl which by definition
maximizes the log likelihood function for a given 1. Similar to how we
found equation (4), we want to maximize

4 4
F:—Z[In(m!’;!\/,;!mJ—i-;”i'nMi}+ﬂ[;ﬂi—1} (19)

Where we have a different Lagrange multipler because we are not
maximizing for each parameter. We find
oF nj£1 N nj£1
=0=—"T=+0 = |fljz1 = ——2= 20
Opiz1 i1 i B (20)

Now lets plug this into our constraint to find

4
no+n3+n
02#1*1+Zui=m*1*% (21)
i=2
This tells us that 5 is a function of u3, with
N — n
=1 (22)
— M
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Now with our 3, we can write that the maximally likely ﬁ,-;,gl given any p1
is simply

ni(]' _:U’l) (23)

ﬁi;ﬁl(ul) = N—n

Now we just have to plug these into our Likelihood function to find the
maximally likely outcome given any p;
nm 2I12ﬁl13ﬁl14 (24)

N!
4!,“1 o™ 3™ g

L, fiza) = ni'natng!n

Looking at the ratio and plugging in, the form simplifies to identically the
binomial distribution!

g G
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