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Dice Example

Let’s consider a model with 4 parameters µ = (µ1, µ2, µ3, µ4) which
predicts how often a face will be rolled from a 4 sided die.

The parameters of our model will be simply the probability of each
face being rolled in one throw

P(1|µ) = µ1 P(3|µ) = µ3

P(2|µ) = µ2 P(4|µ) = µ4

For collecting our data, we simply roll the die N number of times, and
find n1 total times a 1 is rolled, etc. So we have

N =
4∑

i=1

ni 1 =
4∑

i=1

µi (1)
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The Likelihood Function

Without any data, the probability for getting n1 1’s, n2 2’s and n3 3’s
and n4 4’s in N total throws is given by the multinomial distribution

P(n|µ,N) =
N!

n1!n2!n3!n4!
µn1

1 µ
n2
2 µ

n3
3 µ

n4
4

Where n = (n1, n2, n3, n4).

In general, if we have made an observation, we can consider its
Likelihood as being a function of our model’s parameters, instead a
function of the data we observed

L(µ) = P(n|µ,N)

In our case, the different n’s are what we observe (fixed) giving us a
Likelihood function of

L(µ) =
N!

n1!n2!n3!n4!
µn1

1 µ
n2
2 µ

n3
3 µ

n4
4
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We can look at the logarithm of the likelihood function since it gives us
the same answer as otherwise and we only care about differences.

F = −2 ln L = −2
[

ln
( N!

n1!n2!n3!n4!

)
+

4∑
i=1

ni lnµi

]
(2)

Since we have a constraint that the probabilities must add to 1, we can
use Lagrange multipliers to solve for the maximally likely µ̂i

F = −2
[

ln
( N!

n1!n2!n3!n4!

)
+

4∑
i=1

ni lnµi

]
+ α

[ 4∑
i=1

µi − 1
]

(3)

Taking the derivative with respect to µi , and solving for α in the standard
way1, we find the maximum likelihood estimates µ̂i , for i = 1, 2, 3, 4 to be

µ̂i =
ni
N

(4)

1in backup
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Let’s suppose that we only care about µ1, and take the rest as nuisance
parameters. We let ˆ̂µi for i 6= 1 be the ML estimate given µ1. In order to
find the confidence interval, we need to find

λ = L(µ1, ˆ̂µi 6=1)/L(µ̂) (5)

Where λ is called the likelihood ratio. A quick note on the notation:

Vector Description

µ The parameter(s) of interest, we can freely change these
µ̂ The maximum likelihood estimate for the parameter(s),

coordinate of the bottom of the ”well”
ˆ̂µi 6=1 The nuisance parameters that gives us the maximum likelihood

constrained to a value of µ1

W. Nash, B. Stone (UCLA) Profile Likelihood November 3, 2017 5 / 12



We already have L(µ̂) from just plugging in equation (4), but now we need
to find ˆ̂µi 6=1. We do it in roughly the same way, but only maximize with
respect to some of the parameters2, we find that

λ =
(µ1

µ̂1

)n1
(1− µ1

1− µ̂1

)N−n1

(6)

So we have that our profile likelihood function

−2 lnλ = −2
[
n1 ln

µ1

µ̂1
+ (N − n1) ln

(1− µ1

1− µ̂1

)]
(7)

Where our maximum likelihood estimate is

µ̂1 =
n1

N
(8)

2in backup
W. Nash, B. Stone (UCLA) Profile Likelihood November 3, 2017 6 / 12



Plotting the Likelihood distribution

We are now fully prepped to draw the likelihood well and find the
confidence interval. I wrote some code that randomly rolled N = 100 dice,
giving

n1 = 26 (9)

n2 = 27 (10)

n3 = 24 (11)

n4 = 23 (12)

I then wrote some code to plotted the log-likelihood ratio we found with

−2 lnλ = −2
[
26 ln

µ1

0.26
+ 74 ln

(1− µ1

0.74

)]
(13)

Moving in small steps around the maximum likelihood estimate of
µ̂1 = 0.26, we can find how the curve looks
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Looking at the numerical values in the plot, we can determine our 68%
confidence interval for µ1 to be

[0.218, 0.305] (14)

This tells us that for any of the µ1’s within the interval, our data would
fall within the 68% acceptance interval of µ1 (approximately by Wilk’s
theorem).
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Backup

Equation (4) derivation: The function we want to maximize is

F = −2
[

ln
( N!

n1!n2!n3!n4!

)
+

4∑
i=1

ni lnµi

]
+ α

[ 4∑
i=1

µi − 1
]

(15)

We do this by taking the derivative with respect to one of the µi ’s

∂F

∂µi
=

ni
µi

+ α = 0→ µ̂i = −ni
α

(16)

This tells us the maximum likelihood estimate for our parameter µi , but
we still don’t know α, so we to plug these back into our constraint
equation. In the case that all the parameters are maximized, we have

0 =
4∑

i=1

µ̂i − 1 = −n1 + n2 + n3 + n4

α
− 1 (17)

This tells us α = −N and therefore µ̂i =
ni
N

(18)
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Equation (6) derivation: We are looking for ˆ̂µi 6=1 which by definition
maximizes the log likelihood function for a given µ1. Similar to how we
found equation (4), we want to maximize

F = −2
[

ln
( N!

n1!n2!n3!n4!

)
+

4∑
i=1

ni lnµi

]
+ β

[ 4∑
i=1

µi − 1
]

(19)

Where we have a different Lagrange multipler because we are not
maximizing for each parameter. We find

∂F

∂µi 6=1
= 0 =

ni 6=1

µi 6=1
+ β → ˆ̂µi 6=1 = −

ni 6=1

β
(20)

Now lets plug this into our constraint to find β

0 = µ1 − 1 +
4∑

i=2

µi = µ1 − 1− n2 + n3 + n4

β
(21)

This tells us that β is a function of µ1, with

β = −N − n1

1− µ1
(22)
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Now with our β, we can write that the maximally likely ˆ̂µi 6=1 given any µ1

is simply

ˆ̂µi 6=1(µ1) =
ni (1− µ1)

N − n1
(23)

Now we just have to plug these into our Likelihood function to find the
maximally likely outcome given any µ1

L(µ1, ˆ̂µi 6=1) =
N!

n1!n2!n3!n4!
µn1

1
ˆ̂µn2

2
ˆ̂µn3

3
ˆ̂µn4

4 (24)

Looking at the ratio and plugging in, the form simplifies to identically the
binomial distribution!

λ =
L(µ1, ˆ̂µi 6=1)

L(µ̂)
=
(µ1

µ̂1

)n1
(1− µ1

1− µ̂1

)N−n1

(25)
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